fahadqazi's picture
Update app.py
751e6e2 verified
import gradio as gr
import torch
import soundfile as sf
import spaces
import os
import numpy as np
import re
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, AutoTokenizer
from speechbrain.pretrained import EncoderClassifier
from datasets import load_dataset
from huggingface_hub import hf_hub_download
import uuid
import wave
import io
import tempfile
import shutil
from piper import PiperVoice
device = "cuda" if torch.cuda.is_available() else "cpu"
auth_token = os.environ.get("hf_token") or True
model_path = hf_hub_download(repo_id="fahadqazi/piper-sindhi", filename="model.onnx", use_auth_token=auth_token)
config_path = hf_hub_download(repo_id="fahadqazi/piper-sindhi", filename="model.onnx.json", use_auth_token=auth_token)
voice = PiperVoice.load(model_path=model_path, config_path=config_path, use_cuda=device=="cuda")
synthesize_args = {
"speaker_id": 0,
"sentence_silence": 0.5
}
# def load_models_and_data():
# auth_token = os.environ.get("hf_token") or True
# model_name = "microsoft/speecht5_tts"
# processor = SpeechT5Processor.from_pretrained(model_name)
# tokenizer = AutoTokenizer.from_pretrained("fahadqazi/testts1234", use_auth_token=auth_token)
# processor.tokenizer = tokenizer
# model = SpeechT5ForTextToSpeech.from_pretrained("fahadqazi/testts1234", use_auth_token=auth_token).to(device)
# vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
# return model, processor, vocoder
# model, processor, vocoder = load_models_and_data()
# embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
# speaker_embeddings = embeddings_dataset[7306]["xvector"]
# speaker_embeddings = torch.tensor(speaker_embeddings).to(device)
# default_embedding = speaker_embeddings
replacements = [
# ("۾", "مين"), #
# ("۽", "ائين"), #
]
number_words = {
0: "ٻڙي",
1: "هڪ",
2: "ٻہ",
3: "ٽي",
4: "چار",
5: "پنج",
6: "ڇه",
7: "ست",
8: "اٺ",
9: "نوه",
10: "ڏهہ",
11: "يارنهن", 12: "ٻارنهن", 13: "تيرنهن", 14: "چوڏنهن", 15: "پنڌرنهن", 16: "سورنهن", 17: "سترنهن",
18: "ارڙنهن", 19: "اوڻينهن", 20: "ويهہ", 30: "ٽيهہ", 40: "چاليهہ", 50: "پنجها", 60: "سٺ", 70: "ستر",
80: "اسي", 90: "نوي", 100: "سوه", 1000: "هزار"
}
def number_to_words(number):
if number < 20:
return number_words[number]
elif number < 100:
tens, unit = divmod(number, 10)
return (number_words[unit] if unit else "") + (" " + number_words[tens * 10])
elif number < 1000:
hundreds, remainder = divmod(number, 100)
return (number_words[hundreds] + " سوه" if hundreds > 1 else "سوه") + (" " + number_to_words(remainder) if remainder else "")
elif number < 1000000:
thousands, remainder = divmod(number, 1000)
return (number_to_words(thousands) + " هزار" if thousands > 1 else "هزار") + (" " + number_to_words(remainder) if remainder else "")
elif number < 1000000000:
millions, remainder = divmod(number, 1000000)
return number_to_words(millions) + " ملين" + (" " + number_to_words(remainder) if remainder else "")
elif number < 1000000000000:
billions, remainder = divmod(number, 1000000000)
return number_to_words(billions) + " بلين" + (" " + number_to_words(remainder) if remainder else "")
else:
return str(number)
def replace_numbers_with_words(text):
def replace(match):
number = int(match.group())
return number_to_words(number)
# Find the numbers and change with words.
result = re.sub(r'\b\d+\b', replace, text)
return result
def normalize_text(text):
# Convert to lowercase
text = text.lower()
# Replace numbers followed by "ع" with "عيسوي"
text = re.sub(r'(\d+)\s*ع', r'\1 عيسوي', text)
# Replace numbers with words
text = replace_numbers_with_words(text)
# Apply character replacements
for old, new in replacements:
text = text.replace(old, new)
# # Remove punctuation
# text = re.sub(r'[^\w\s]', '', text)
return text
@spaces.GPU(duration=60)
def text_to_speech(text, audio_file=None):
# Clear all outputs
# yield gr.update(value=None), gr.update(value=None)
# Normalize the input text
normalized_text = normalize_text(text)
print("Normalized text: ", normalized_text)
# Split text while preserving "..." (ellipsis)
segments = re.split(r'(\.\.\.|[\n.۔])', normalized_text)
segments = [x.strip() for x in segments]
#print("segments: ", segments)
# Merge back the ellipsis with previous segment
combined_segments = []
temp_segment = ""
for segment in segments:
if segment == '...':
temp_segment += " ..." # Keep ellipsis as part of the previous segment
elif segment in ['.', '\n', '۔']:
if temp_segment:
combined_segments.append(temp_segment.strip())
temp_segment = ""
else:
if temp_segment:
combined_segments.append(temp_segment.strip())
temp_segment = segment
if temp_segment:
combined_segments.append(temp_segment.strip())
#print("combined_segments: ", combined_segments)
# Silence lengths (50ms for '.', '\n', '۔', 150ms for '...')
short_silence = np.zeros(int(22050 * 0.05), dtype=np.int16) # 50ms pause
long_silence = np.zeros(int(22050 * 0.15), dtype=np.int16) # 150ms pause for "..."
# Create a temporary directory for storing individual segment WAV files
temp_dir = tempfile.mkdtemp()
try:
output_file = f"{uuid.uuid4()}.wav"
# Open the final output WAV file
with sf.SoundFile(output_file, 'w', samplerate=22050, channels=1, subtype='PCM_16') as output:
# Synthesize and save each segment to a WAV file
for i, segment in enumerate(combined_segments):
segment_path = os.path.join(temp_dir, f"segment_{i}.wav")
with wave.open(segment_path, "wb") as wav_file:
voice.synthesize(segment, wav_file, **synthesize_args)
# Read the segment and write it to the final output
audio_segment, _ = sf.read(segment_path, dtype='int16')
output.write(audio_segment)
# Stream the current progress
# yield output_file
# Add silence after each segment
if segment.endswith("...") or segment.endswith("…"):
output.write(long_silence)
elif segment.endswith(".") or segment.endswith("\n") or segment.endswith("۔"):
output.write(short_silence)
finally:
# Clean up the temporary directory
shutil.rmtree(temp_dir)
# Return the final WAV file
yield output_file
# def text_to_speech(text, audio_file=None):
# # Normalize the input text
# normalized_text = normalize_text(text)
# print("normalized text: ", normalized_text)
# # Generate speech: Write to file
# output_file = f"{uuid.uuid4()}.wav"
# with wave.open(output_file, "wb") as wav_file:
# voice.synthesize(normalized_text, wav_file, **synthesize_args)
# return output_file
iface = gr.Interface(
fn=text_to_speech,
inputs=[
gr.Textbox(label="Enter Sindhi text to convert to speech", value="هيلو ڪهڙا حال آهن")
],
outputs=[
gr.Audio(label="Generated Speech", type="numpy")
],
title="Sindhi Text-to-Speech Demo",
description="Enter Sindhi text, and listen to the generated speech. Use shorter messages for better results."
)
iface.launch(share=True)