move inference_state to gr.state
Browse files
app.py
CHANGED
@@ -17,7 +17,6 @@ import cv2
|
|
17 |
import matplotlib.pyplot as plt
|
18 |
import numpy as np
|
19 |
|
20 |
-
import spaces
|
21 |
import torch
|
22 |
|
23 |
from moviepy.editor import ImageSequenceClip
|
@@ -70,11 +69,8 @@ examples = [
|
|
70 |
]
|
71 |
|
72 |
OBJ_ID = 0
|
73 |
-
|
74 |
sam2_checkpoint = "checkpoints/edgetam.pt"
|
75 |
model_cfg = "edgetam.yaml"
|
76 |
-
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
77 |
-
global_inference_states = {}
|
78 |
|
79 |
|
80 |
def get_video_fps(video_path):
|
@@ -92,75 +88,82 @@ def get_video_fps(video_path):
|
|
92 |
|
93 |
|
94 |
def reset(
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
100 |
):
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
if
|
107 |
-
predictor.reset_state(
|
108 |
-
|
109 |
-
session_all_frames = None
|
110 |
-
global_inference_states[session_id] = None
|
111 |
return (
|
112 |
None,
|
113 |
gr.update(open=True),
|
114 |
None,
|
115 |
None,
|
116 |
gr.update(value=None, visible=False),
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
121 |
)
|
122 |
|
123 |
|
124 |
def clear_points(
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
128 |
):
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
if global_inference_states[session_id]["tracking_has_started"]:
|
134 |
-
predictor.reset_state(global_inference_states[session_id])
|
135 |
return (
|
136 |
-
|
137 |
None,
|
138 |
gr.update(value=None, visible=False),
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
141 |
)
|
142 |
|
143 |
|
144 |
def preprocess_video_in(
|
145 |
video_path,
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
151 |
):
|
152 |
-
session_id = request.session_hash
|
153 |
-
predictor.to("cpu")
|
154 |
if video_path is None:
|
155 |
return (
|
156 |
gr.update(open=True), # video_in_drawer
|
157 |
None, # points_map
|
158 |
None, # output_image
|
159 |
gr.update(value=None, visible=False), # output_video
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
164 |
)
|
165 |
|
166 |
# Read the first frame
|
@@ -172,14 +175,19 @@ def preprocess_video_in(
|
|
172 |
None, # points_map
|
173 |
None, # output_image
|
174 |
gr.update(value=None, visible=False), # output_video
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
179 |
)
|
180 |
|
|
|
|
|
|
|
181 |
frame_number = 0
|
182 |
-
|
183 |
all_frames = []
|
184 |
|
185 |
while True:
|
@@ -192,100 +200,107 @@ def preprocess_video_in(
|
|
192 |
|
193 |
# Store the first frame
|
194 |
if frame_number == 0:
|
195 |
-
|
196 |
all_frames.append(frame)
|
197 |
|
198 |
frame_number += 1
|
199 |
|
200 |
cap.release()
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
session_input_points = []
|
207 |
-
session_input_labels = []
|
208 |
|
209 |
return [
|
210 |
gr.update(open=False), # video_in_drawer
|
211 |
first_frame, # points_map
|
212 |
None, # output_image
|
213 |
gr.update(value=None, visible=False), # output_video
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
|
|
218 |
]
|
219 |
|
220 |
|
221 |
-
@spaces.GPU
|
222 |
def segment_with_points(
|
223 |
point_type,
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
226 |
evt: gr.SelectData,
|
227 |
-
request: gr.Request,
|
228 |
):
|
229 |
-
|
230 |
-
if torch.cuda.get_device_properties(0).major >= 8:
|
231 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
232 |
-
torch.backends.cudnn.allow_tf32 = True
|
233 |
-
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
234 |
predictor.to("cuda")
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
|
279 |
-
|
280 |
-
|
281 |
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
|
|
|
|
|
|
|
|
289 |
|
290 |
|
291 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
@@ -303,69 +318,82 @@ def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
|
303 |
return mask
|
304 |
|
305 |
|
306 |
-
@spaces.GPU
|
307 |
def propagate_to_all(
|
308 |
video_in,
|
309 |
-
|
310 |
-
|
|
|
|
|
|
|
|
|
311 |
):
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
torch.
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
output_frames = []
|
342 |
-
for out_frame_idx in range(0, len(video_segments), vis_frame_stride):
|
343 |
-
transparent_background = Image.fromarray(
|
344 |
-
session_all_frames[out_frame_idx]
|
345 |
-
).convert("RGBA")
|
346 |
-
out_mask = video_segments[out_frame_idx][OBJ_ID]
|
347 |
-
mask_image = show_mask(out_mask)
|
348 |
-
output_frame = Image.alpha_composite(transparent_background, mask_image)
|
349 |
-
output_frame = np.array(output_frame)
|
350 |
-
output_frames.append(output_frame)
|
351 |
-
|
352 |
-
torch.cuda.empty_cache()
|
353 |
-
|
354 |
-
# Create a video clip from the image sequence
|
355 |
-
original_fps = get_video_fps(video_in)
|
356 |
-
fps = original_fps # Frames per second
|
357 |
-
clip = ImageSequenceClip(output_frames, fps=fps)
|
358 |
-
# Write the result to a file
|
359 |
-
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
|
360 |
-
final_vid_output_path = f"output_video_{unique_id}.mp4"
|
361 |
-
final_vid_output_path = os.path.join(
|
362 |
-
tempfile.gettempdir(), final_vid_output_path
|
363 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
|
365 |
-
# Write the result to a file
|
366 |
-
clip.write_videofile(final_vid_output_path, codec="libx264")
|
367 |
|
368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
|
370 |
|
371 |
def update_ui():
|
@@ -377,6 +405,8 @@ with gr.Blocks() as demo:
|
|
377 |
all_frames = gr.State(None)
|
378 |
input_points = gr.State([])
|
379 |
input_labels = gr.State([])
|
|
|
|
|
380 |
|
381 |
with gr.Column():
|
382 |
# Title
|
@@ -430,6 +460,8 @@ with gr.Blocks() as demo:
|
|
430 |
all_frames,
|
431 |
input_points,
|
432 |
input_labels,
|
|
|
|
|
433 |
],
|
434 |
outputs=[
|
435 |
video_in_drawer, # Accordion to hide uploaded video player
|
@@ -440,6 +472,8 @@ with gr.Blocks() as demo:
|
|
440 |
all_frames,
|
441 |
input_points,
|
442 |
input_labels,
|
|
|
|
|
443 |
],
|
444 |
queue=False,
|
445 |
)
|
@@ -452,6 +486,8 @@ with gr.Blocks() as demo:
|
|
452 |
all_frames,
|
453 |
input_points,
|
454 |
input_labels,
|
|
|
|
|
455 |
],
|
456 |
outputs=[
|
457 |
video_in_drawer, # Accordion to hide uploaded video player
|
@@ -462,6 +498,8 @@ with gr.Blocks() as demo:
|
|
462 |
all_frames,
|
463 |
input_points,
|
464 |
input_labels,
|
|
|
|
|
465 |
],
|
466 |
queue=False,
|
467 |
)
|
@@ -471,14 +509,22 @@ with gr.Blocks() as demo:
|
|
471 |
fn=segment_with_points,
|
472 |
inputs=[
|
473 |
point_type, # "include" or "exclude"
|
|
|
|
|
474 |
input_points,
|
475 |
input_labels,
|
|
|
|
|
476 |
],
|
477 |
outputs=[
|
478 |
points_map, # updated image with points
|
479 |
output_image,
|
|
|
|
|
480 |
input_points,
|
481 |
input_labels,
|
|
|
|
|
482 |
],
|
483 |
queue=False,
|
484 |
)
|
@@ -487,15 +533,23 @@ with gr.Blocks() as demo:
|
|
487 |
clear_points_btn.click(
|
488 |
fn=clear_points,
|
489 |
inputs=[
|
|
|
|
|
490 |
input_points,
|
491 |
input_labels,
|
|
|
|
|
492 |
],
|
493 |
outputs=[
|
494 |
points_map,
|
495 |
output_image,
|
496 |
output_video,
|
|
|
|
|
497 |
input_points,
|
498 |
input_labels,
|
|
|
|
|
499 |
],
|
500 |
queue=False,
|
501 |
)
|
@@ -507,6 +561,8 @@ with gr.Blocks() as demo:
|
|
507 |
all_frames,
|
508 |
input_points,
|
509 |
input_labels,
|
|
|
|
|
510 |
],
|
511 |
outputs=[
|
512 |
video_in,
|
@@ -518,6 +574,8 @@ with gr.Blocks() as demo:
|
|
518 |
all_frames,
|
519 |
input_points,
|
520 |
input_labels,
|
|
|
|
|
521 |
],
|
522 |
queue=False,
|
523 |
)
|
@@ -531,10 +589,21 @@ with gr.Blocks() as demo:
|
|
531 |
fn=propagate_to_all,
|
532 |
inputs=[
|
533 |
video_in,
|
|
|
534 |
all_frames,
|
|
|
|
|
|
|
|
|
535 |
],
|
536 |
outputs=[
|
537 |
output_video,
|
|
|
|
|
|
|
|
|
|
|
|
|
538 |
],
|
539 |
concurrency_limit=10,
|
540 |
queue=False,
|
|
|
17 |
import matplotlib.pyplot as plt
|
18 |
import numpy as np
|
19 |
|
|
|
20 |
import torch
|
21 |
|
22 |
from moviepy.editor import ImageSequenceClip
|
|
|
69 |
]
|
70 |
|
71 |
OBJ_ID = 0
|
|
|
72 |
sam2_checkpoint = "checkpoints/edgetam.pt"
|
73 |
model_cfg = "edgetam.yaml"
|
|
|
|
|
74 |
|
75 |
|
76 |
def get_video_fps(video_path):
|
|
|
88 |
|
89 |
|
90 |
def reset(
|
91 |
+
first_frame,
|
92 |
+
all_frames,
|
93 |
+
input_points,
|
94 |
+
input_labels,
|
95 |
+
inference_state,
|
96 |
+
predictor,
|
97 |
):
|
98 |
+
first_frame = None
|
99 |
+
all_frames = None
|
100 |
+
input_points = []
|
101 |
+
input_labels = []
|
102 |
+
|
103 |
+
if inference_state and predictor:
|
104 |
+
predictor.reset_state(inference_state)
|
105 |
+
inference_state = None
|
|
|
|
|
106 |
return (
|
107 |
None,
|
108 |
gr.update(open=True),
|
109 |
None,
|
110 |
None,
|
111 |
gr.update(value=None, visible=False),
|
112 |
+
first_frame,
|
113 |
+
all_frames,
|
114 |
+
input_points,
|
115 |
+
input_labels,
|
116 |
+
inference_state,
|
117 |
+
predictor,
|
118 |
)
|
119 |
|
120 |
|
121 |
def clear_points(
|
122 |
+
first_frame,
|
123 |
+
all_frames,
|
124 |
+
input_points,
|
125 |
+
input_labels,
|
126 |
+
inference_state,
|
127 |
+
predictor,
|
128 |
):
|
129 |
+
input_points = []
|
130 |
+
input_labels = []
|
131 |
+
if inference_state and predictor and inference_state["tracking_has_started"]:
|
132 |
+
predictor.reset_state(inference_state)
|
|
|
|
|
133 |
return (
|
134 |
+
first_frame,
|
135 |
None,
|
136 |
gr.update(value=None, visible=False),
|
137 |
+
first_frame,
|
138 |
+
all_frames,
|
139 |
+
input_points,
|
140 |
+
input_labels,
|
141 |
+
inference_state,
|
142 |
+
predictor,
|
143 |
)
|
144 |
|
145 |
|
146 |
def preprocess_video_in(
|
147 |
video_path,
|
148 |
+
first_frame,
|
149 |
+
all_frames,
|
150 |
+
input_points,
|
151 |
+
input_labels,
|
152 |
+
inference_state,
|
153 |
+
predictor,
|
154 |
):
|
|
|
|
|
155 |
if video_path is None:
|
156 |
return (
|
157 |
gr.update(open=True), # video_in_drawer
|
158 |
None, # points_map
|
159 |
None, # output_image
|
160 |
gr.update(value=None, visible=False), # output_video
|
161 |
+
first_frame,
|
162 |
+
all_frames,
|
163 |
+
input_points,
|
164 |
+
input_labels,
|
165 |
+
inference_state,
|
166 |
+
predictor,
|
167 |
)
|
168 |
|
169 |
# Read the first frame
|
|
|
175 |
None, # points_map
|
176 |
None, # output_image
|
177 |
gr.update(value=None, visible=False), # output_video
|
178 |
+
first_frame,
|
179 |
+
all_frames,
|
180 |
+
input_points,
|
181 |
+
input_labels,
|
182 |
+
inference_state,
|
183 |
+
predictor,
|
184 |
)
|
185 |
|
186 |
+
if predictor is None:
|
187 |
+
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
188 |
+
|
189 |
frame_number = 0
|
190 |
+
_first_frame = None
|
191 |
all_frames = []
|
192 |
|
193 |
while True:
|
|
|
200 |
|
201 |
# Store the first frame
|
202 |
if frame_number == 0:
|
203 |
+
_first_frame = frame
|
204 |
all_frames.append(frame)
|
205 |
|
206 |
frame_number += 1
|
207 |
|
208 |
cap.release()
|
209 |
+
first_frame = copy.deepcopy(_first_frame)
|
210 |
+
inference_state = predictor.init_state(video_path=video_path)
|
211 |
+
input_points = []
|
212 |
+
input_labels = []
|
|
|
|
|
|
|
213 |
|
214 |
return [
|
215 |
gr.update(open=False), # video_in_drawer
|
216 |
first_frame, # points_map
|
217 |
None, # output_image
|
218 |
gr.update(value=None, visible=False), # output_video
|
219 |
+
first_frame,
|
220 |
+
all_frames,
|
221 |
+
input_points,
|
222 |
+
input_labels,
|
223 |
+
inference_state,
|
224 |
+
predictor,
|
225 |
]
|
226 |
|
227 |
|
|
|
228 |
def segment_with_points(
|
229 |
point_type,
|
230 |
+
first_frame,
|
231 |
+
all_frames,
|
232 |
+
input_points,
|
233 |
+
input_labels,
|
234 |
+
inference_state,
|
235 |
+
predictor,
|
236 |
evt: gr.SelectData,
|
|
|
237 |
):
|
238 |
+
if torch.cuda.is_available():
|
|
|
|
|
|
|
|
|
239 |
predictor.to("cuda")
|
240 |
+
inference_state["device"] = "cuda"
|
241 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
242 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
243 |
+
torch.backends.cudnn.allow_tf32 = True
|
244 |
+
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
245 |
+
|
246 |
+
input_points.append(evt.index)
|
247 |
+
print(f"TRACKING INPUT POINT: {input_points}")
|
248 |
+
|
249 |
+
if point_type == "include":
|
250 |
+
input_labels.append(1)
|
251 |
+
elif point_type == "exclude":
|
252 |
+
input_labels.append(0)
|
253 |
+
print(f"TRACKING INPUT LABEL: {input_labels}")
|
254 |
+
|
255 |
+
# Open the image and get its dimensions
|
256 |
+
transparent_background = Image.fromarray(first_frame).convert("RGBA")
|
257 |
+
w, h = transparent_background.size
|
258 |
+
|
259 |
+
# Define the circle radius as a fraction of the smaller dimension
|
260 |
+
fraction = 0.01 # You can adjust this value as needed
|
261 |
+
radius = int(fraction * min(w, h))
|
262 |
+
|
263 |
+
# Create a transparent layer to draw on
|
264 |
+
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
|
265 |
+
|
266 |
+
for index, track in enumerate(input_points):
|
267 |
+
if input_labels[index] == 1:
|
268 |
+
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
|
269 |
+
else:
|
270 |
+
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
|
271 |
+
|
272 |
+
# Convert the transparent layer back to an image
|
273 |
+
transparent_layer = Image.fromarray(transparent_layer, "RGBA")
|
274 |
+
selected_point_map = Image.alpha_composite(
|
275 |
+
transparent_background, transparent_layer
|
276 |
+
)
|
277 |
|
278 |
+
# Let's add a positive click at (x, y) = (210, 350) to get started
|
279 |
+
points = np.array(input_points, dtype=np.float32)
|
280 |
+
# for labels, `1` means positive click and `0` means negative click
|
281 |
+
labels = np.array(input_labels, dtype=np.int32)
|
282 |
+
_, _, out_mask_logits = predictor.add_new_points(
|
283 |
+
inference_state=inference_state,
|
284 |
+
frame_idx=0,
|
285 |
+
obj_id=OBJ_ID,
|
286 |
+
points=points,
|
287 |
+
labels=labels,
|
288 |
+
)
|
289 |
|
290 |
+
mask_image = show_mask((out_mask_logits[0] > 0.0).cpu().numpy())
|
291 |
+
first_frame_output = Image.alpha_composite(transparent_background, mask_image)
|
292 |
|
293 |
+
torch.cuda.empty_cache()
|
294 |
+
return (
|
295 |
+
selected_point_map,
|
296 |
+
first_frame_output,
|
297 |
+
first_frame,
|
298 |
+
all_frames,
|
299 |
+
input_points,
|
300 |
+
input_labels,
|
301 |
+
inference_state,
|
302 |
+
predictor,
|
303 |
+
)
|
304 |
|
305 |
|
306 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
|
|
318 |
return mask
|
319 |
|
320 |
|
|
|
321 |
def propagate_to_all(
|
322 |
video_in,
|
323 |
+
first_frame,
|
324 |
+
all_frames,
|
325 |
+
input_points,
|
326 |
+
input_labels,
|
327 |
+
inference_state,
|
328 |
+
predictor,
|
329 |
):
|
330 |
+
if torch.cuda.is_available():
|
331 |
+
predictor.to("cuda")
|
332 |
+
inference_state["device"] = "cuda"
|
333 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
334 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
335 |
+
torch.backends.cudnn.allow_tf32 = True
|
336 |
+
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
337 |
+
|
338 |
+
if len(input_points) == 0 or video_in is None or inference_state is None:
|
339 |
+
return None
|
340 |
+
# run propagation throughout the video and collect the results in a dict
|
341 |
+
video_segments = {} # video_segments contains the per-frame segmentation results
|
342 |
+
print("starting propagate_in_video")
|
343 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
|
344 |
+
inference_state
|
345 |
+
):
|
346 |
+
video_segments[out_frame_idx] = {
|
347 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
348 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
349 |
+
}
|
350 |
+
|
351 |
+
# obtain the segmentation results every few frames
|
352 |
+
vis_frame_stride = 1
|
353 |
+
|
354 |
+
output_frames = []
|
355 |
+
for out_frame_idx in range(0, len(video_segments), vis_frame_stride):
|
356 |
+
transparent_background = Image.fromarray(all_frames[out_frame_idx]).convert(
|
357 |
+
"RGBA"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
)
|
359 |
+
out_mask = video_segments[out_frame_idx][OBJ_ID]
|
360 |
+
mask_image = show_mask(out_mask)
|
361 |
+
output_frame = Image.alpha_composite(transparent_background, mask_image)
|
362 |
+
output_frame = np.array(output_frame)
|
363 |
+
output_frames.append(output_frame)
|
364 |
+
|
365 |
+
torch.cuda.empty_cache()
|
366 |
+
|
367 |
+
# Create a video clip from the image sequence
|
368 |
+
original_fps = get_video_fps(video_in)
|
369 |
+
fps = original_fps # Frames per second
|
370 |
+
clip = ImageSequenceClip(output_frames, fps=fps)
|
371 |
+
# Write the result to a file
|
372 |
+
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
|
373 |
+
final_vid_output_path = f"output_video_{unique_id}.mp4"
|
374 |
+
final_vid_output_path = os.path.join(tempfile.gettempdir(), final_vid_output_path)
|
375 |
+
|
376 |
+
# Write the result to a file
|
377 |
+
clip.write_videofile(final_vid_output_path, codec="libx264")
|
378 |
+
|
379 |
+
return (
|
380 |
+
gr.update(value=final_vid_output_path),
|
381 |
+
first_frame,
|
382 |
+
all_frames,
|
383 |
+
input_points,
|
384 |
+
input_labels,
|
385 |
+
inference_state,
|
386 |
+
predictor,
|
387 |
+
)
|
388 |
|
|
|
|
|
389 |
|
390 |
+
try:
|
391 |
+
from spaces import GPU
|
392 |
+
|
393 |
+
segment_with_points = GPU(segment_with_points)
|
394 |
+
propagate_to_all = GPU(propagate_to_all)
|
395 |
+
except:
|
396 |
+
print("spaces unavailable")
|
397 |
|
398 |
|
399 |
def update_ui():
|
|
|
405 |
all_frames = gr.State(None)
|
406 |
input_points = gr.State([])
|
407 |
input_labels = gr.State([])
|
408 |
+
inference_state = gr.State(None)
|
409 |
+
predictor = gr.State(None)
|
410 |
|
411 |
with gr.Column():
|
412 |
# Title
|
|
|
460 |
all_frames,
|
461 |
input_points,
|
462 |
input_labels,
|
463 |
+
inference_state,
|
464 |
+
predictor,
|
465 |
],
|
466 |
outputs=[
|
467 |
video_in_drawer, # Accordion to hide uploaded video player
|
|
|
472 |
all_frames,
|
473 |
input_points,
|
474 |
input_labels,
|
475 |
+
inference_state,
|
476 |
+
predictor,
|
477 |
],
|
478 |
queue=False,
|
479 |
)
|
|
|
486 |
all_frames,
|
487 |
input_points,
|
488 |
input_labels,
|
489 |
+
inference_state,
|
490 |
+
predictor,
|
491 |
],
|
492 |
outputs=[
|
493 |
video_in_drawer, # Accordion to hide uploaded video player
|
|
|
498 |
all_frames,
|
499 |
input_points,
|
500 |
input_labels,
|
501 |
+
inference_state,
|
502 |
+
predictor,
|
503 |
],
|
504 |
queue=False,
|
505 |
)
|
|
|
509 |
fn=segment_with_points,
|
510 |
inputs=[
|
511 |
point_type, # "include" or "exclude"
|
512 |
+
first_frame,
|
513 |
+
all_frames,
|
514 |
input_points,
|
515 |
input_labels,
|
516 |
+
inference_state,
|
517 |
+
predictor,
|
518 |
],
|
519 |
outputs=[
|
520 |
points_map, # updated image with points
|
521 |
output_image,
|
522 |
+
first_frame,
|
523 |
+
all_frames,
|
524 |
input_points,
|
525 |
input_labels,
|
526 |
+
inference_state,
|
527 |
+
predictor,
|
528 |
],
|
529 |
queue=False,
|
530 |
)
|
|
|
533 |
clear_points_btn.click(
|
534 |
fn=clear_points,
|
535 |
inputs=[
|
536 |
+
first_frame,
|
537 |
+
all_frames,
|
538 |
input_points,
|
539 |
input_labels,
|
540 |
+
inference_state,
|
541 |
+
predictor,
|
542 |
],
|
543 |
outputs=[
|
544 |
points_map,
|
545 |
output_image,
|
546 |
output_video,
|
547 |
+
first_frame,
|
548 |
+
all_frames,
|
549 |
input_points,
|
550 |
input_labels,
|
551 |
+
inference_state,
|
552 |
+
predictor,
|
553 |
],
|
554 |
queue=False,
|
555 |
)
|
|
|
561 |
all_frames,
|
562 |
input_points,
|
563 |
input_labels,
|
564 |
+
inference_state,
|
565 |
+
predictor,
|
566 |
],
|
567 |
outputs=[
|
568 |
video_in,
|
|
|
574 |
all_frames,
|
575 |
input_points,
|
576 |
input_labels,
|
577 |
+
inference_state,
|
578 |
+
predictor,
|
579 |
],
|
580 |
queue=False,
|
581 |
)
|
|
|
589 |
fn=propagate_to_all,
|
590 |
inputs=[
|
591 |
video_in,
|
592 |
+
first_frame,
|
593 |
all_frames,
|
594 |
+
input_points,
|
595 |
+
input_labels,
|
596 |
+
inference_state,
|
597 |
+
predictor,
|
598 |
],
|
599 |
outputs=[
|
600 |
output_video,
|
601 |
+
first_frame,
|
602 |
+
all_frames,
|
603 |
+
input_points,
|
604 |
+
input_labels,
|
605 |
+
inference_state,
|
606 |
+
predictor,
|
607 |
],
|
608 |
concurrency_limit=10,
|
609 |
queue=False,
|