Spaces:
Runtime error
Runtime error
import torch | |
from scipy import integrate | |
from ...util import append_dims | |
from einops import rearrange | |
class NoDynamicThresholding: | |
def __call__(self, uncond, cond, scale): | |
scale = append_dims(scale, cond.ndim) if isinstance(scale, torch.Tensor) else scale | |
return uncond + scale * (cond - uncond) | |
class StaticThresholding: | |
def __call__(self, uncond, cond, scale): | |
result = uncond + scale * (cond - uncond) | |
result = torch.clamp(result, min=-1.0, max=1.0) | |
return result | |
def dynamic_threshold(x, p=0.95): | |
N, T, C, H, W = x.shape | |
x = rearrange(x, "n t c h w -> n c (t h w)") | |
l, r = x.quantile(q=torch.tensor([1 - p, p], device=x.device), dim=-1, keepdim=True) | |
s = torch.maximum(-l, r) | |
threshold_mask = (s > 1).expand(-1, -1, H * W * T) | |
if threshold_mask.any(): | |
x = torch.where(threshold_mask, x.clamp(min=-1 * s, max=s), x) | |
x = rearrange(x, "n c (t h w) -> n t c h w", t=T, h=H, w=W) | |
return x | |
def dynamic_thresholding2(x0): | |
p = 0.995 # A hyperparameter in the paper of "Imagen" [1]. | |
origin_dtype = x0.dtype | |
x0 = x0.to(torch.float32) | |
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) | |
s = append_dims(torch.maximum(s, torch.ones_like(s).to(s.device)), x0.dim()) | |
x0 = torch.clamp(x0, -s, s) # / s | |
return x0.to(origin_dtype) | |
def latent_dynamic_thresholding(x0): | |
p = 0.9995 | |
origin_dtype = x0.dtype | |
x0 = x0.to(torch.float32) | |
s = torch.quantile(torch.abs(x0), p, dim=2) | |
s = append_dims(s, x0.dim()) | |
x0 = torch.clamp(x0, -s, s) / s | |
return x0.to(origin_dtype) | |
def dynamic_thresholding3(x0): | |
p = 0.995 # A hyperparameter in the paper of "Imagen" [1]. | |
origin_dtype = x0.dtype | |
x0 = x0.to(torch.float32) | |
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) | |
s = append_dims(torch.maximum(s, torch.ones_like(s).to(s.device)), x0.dim()) | |
x0 = torch.clamp(x0, -s, s) # / s | |
return x0.to(origin_dtype) | |
class DynamicThresholding: | |
def __call__(self, uncond, cond, scale): | |
mean = uncond.mean() | |
std = uncond.std() | |
result = uncond + scale * (cond - uncond) | |
result_mean, result_std = result.mean(), result.std() | |
result = (result - result_mean) / result_std * std | |
# result = dynamic_thresholding3(result) | |
return result | |
class DynamicThresholdingV1: | |
def __init__(self, scale_factor): | |
self.scale_factor = scale_factor | |
def __call__(self, uncond, cond, scale): | |
result = uncond + scale * (cond - uncond) | |
unscaled_result = result / self.scale_factor | |
B, T, C, H, W = unscaled_result.shape | |
flattened = rearrange(unscaled_result, "b t c h w -> b c (t h w)") | |
means = flattened.mean(dim=2).unsqueeze(2) | |
recentered = flattened - means | |
magnitudes = recentered.abs().max() | |
normalized = recentered / magnitudes | |
thresholded = latent_dynamic_thresholding(normalized) | |
denormalized = thresholded * magnitudes | |
uncentered = denormalized + means | |
unflattened = rearrange(uncentered, "b c (t h w) -> b t c h w", t=T, h=H, w=W) | |
scaled_result = unflattened * self.scale_factor | |
return scaled_result | |
class DynamicThresholdingV2: | |
def __call__(self, uncond, cond, scale): | |
B, T, C, H, W = uncond.shape | |
diff = cond - uncond | |
mim_target = uncond + diff * 4.0 | |
cfg_target = uncond + diff * 8.0 | |
mim_flattened = rearrange(mim_target, "b t c h w -> b c (t h w)") | |
cfg_flattened = rearrange(cfg_target, "b t c h w -> b c (t h w)") | |
mim_means = mim_flattened.mean(dim=2).unsqueeze(2) | |
cfg_means = cfg_flattened.mean(dim=2).unsqueeze(2) | |
mim_centered = mim_flattened - mim_means | |
cfg_centered = cfg_flattened - cfg_means | |
mim_scaleref = mim_centered.std(dim=2).unsqueeze(2) | |
cfg_scaleref = cfg_centered.std(dim=2).unsqueeze(2) | |
cfg_renormalized = cfg_centered / cfg_scaleref * mim_scaleref | |
result = cfg_renormalized + cfg_means | |
unflattened = rearrange(result, "b c (t h w) -> b t c h w", t=T, h=H, w=W) | |
return unflattened | |
def linear_multistep_coeff(order, t, i, j, epsrel=1e-4): | |
if order - 1 > i: | |
raise ValueError(f"Order {order} too high for step {i}") | |
def fn(tau): | |
prod = 1.0 | |
for k in range(order): | |
if j == k: | |
continue | |
prod *= (tau - t[i - k]) / (t[i - j] - t[i - k]) | |
return prod | |
return integrate.quad(fn, t[i], t[i + 1], epsrel=epsrel)[0] | |
def get_ancestral_step(sigma_from, sigma_to, eta=1.0): | |
if not eta: | |
return sigma_to, 0.0 | |
sigma_up = torch.minimum( | |
sigma_to, | |
eta * (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5, | |
) | |
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5 | |
return sigma_down, sigma_up | |
def to_d(x, sigma, denoised): | |
return (x - denoised) / append_dims(sigma, x.ndim) | |
def to_neg_log_sigma(sigma): | |
return sigma.log().neg() | |
def to_sigma(neg_log_sigma): | |
return neg_log_sigma.neg().exp() | |