Spaces:
Runtime error
Runtime error
""" | |
Lookup Free Quantization | |
Proposed in https://arxiv.org/abs/2310.05737 | |
In the simplest setup, each dimension is quantized into {-1, 1}. | |
An entropy penalty is used to encourage utilization. | |
""" | |
from math import log2, ceil | |
from collections import namedtuple | |
import torch | |
from torch import nn, einsum | |
import torch.nn.functional as F | |
from torch.nn import Module | |
from torch.cuda.amp import autocast | |
from einops import rearrange, reduce, pack, unpack | |
# constants | |
Return = namedtuple("Return", ["quantized", "indices", "entropy_aux_loss"]) | |
LossBreakdown = namedtuple("LossBreakdown", ["per_sample_entropy", "batch_entropy", "commitment"]) | |
# helper functions | |
def exists(v): | |
return v is not None | |
def default(*args): | |
for arg in args: | |
if exists(arg): | |
return arg() if callable(arg) else arg | |
return None | |
def pack_one(t, pattern): | |
return pack([t], pattern) | |
def unpack_one(t, ps, pattern): | |
return unpack(t, ps, pattern)[0] | |
# entropy | |
def log(t, eps=1e-5): | |
return t.clamp(min=eps).log() | |
def entropy(prob): | |
return (-prob * log(prob)).sum(dim=-1) | |
# class | |
class LFQ(Module): | |
def __init__( | |
self, | |
*, | |
dim=None, | |
codebook_size=None, | |
entropy_loss_weight=0.1, | |
commitment_loss_weight=0.25, | |
diversity_gamma=1.0, | |
straight_through_activation=nn.Identity(), | |
num_codebooks=1, | |
keep_num_codebooks_dim=None, | |
codebook_scale=1.0, # for residual LFQ, codebook scaled down by 2x at each layer | |
frac_per_sample_entropy=1.0, # make less than 1. to only use a random fraction of the probs for per sample entropy | |
): | |
super().__init__() | |
# some assert validations | |
assert exists(dim) or exists(codebook_size), "either dim or codebook_size must be specified for LFQ" | |
assert ( | |
not exists(codebook_size) or log2(codebook_size).is_integer() | |
), f"your codebook size must be a power of 2 for lookup free quantization (suggested {2 ** ceil(log2(codebook_size))})" | |
codebook_size = default(codebook_size, lambda: 2**dim) | |
codebook_dim = int(log2(codebook_size)) | |
codebook_dims = codebook_dim * num_codebooks | |
dim = default(dim, codebook_dims) | |
has_projections = dim != codebook_dims | |
self.project_in = nn.Linear(dim, codebook_dims) if has_projections else nn.Identity() | |
self.project_out = nn.Linear(codebook_dims, dim) if has_projections else nn.Identity() | |
self.has_projections = has_projections | |
self.dim = dim | |
self.codebook_dim = codebook_dim | |
self.num_codebooks = num_codebooks | |
keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1) | |
assert not (num_codebooks > 1 and not keep_num_codebooks_dim) | |
self.keep_num_codebooks_dim = keep_num_codebooks_dim | |
# straight through activation | |
self.activation = straight_through_activation | |
# entropy aux loss related weights | |
assert 0 < frac_per_sample_entropy <= 1.0 | |
self.frac_per_sample_entropy = frac_per_sample_entropy | |
self.diversity_gamma = diversity_gamma | |
self.entropy_loss_weight = entropy_loss_weight | |
# codebook scale | |
self.codebook_scale = codebook_scale | |
# commitment loss | |
self.commitment_loss_weight = commitment_loss_weight | |
# for no auxiliary loss, during inference | |
self.register_buffer("mask", 2 ** torch.arange(codebook_dim - 1, -1, -1)) | |
self.register_buffer("zero", torch.tensor(0.0), persistent=False) | |
# codes | |
all_codes = torch.arange(codebook_size) | |
bits = ((all_codes[..., None].int() & self.mask) != 0).float() | |
codebook = self.bits_to_codes(bits) | |
self.register_buffer("codebook", codebook, persistent=False) | |
def bits_to_codes(self, bits): | |
return bits * self.codebook_scale * 2 - self.codebook_scale | |
def dtype(self): | |
return self.codebook.dtype | |
def indices_to_codes(self, indices, project_out=True): | |
is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim)) | |
if not self.keep_num_codebooks_dim: | |
indices = rearrange(indices, "... -> ... 1") | |
# indices to codes, which are bits of either -1 or 1 | |
bits = ((indices[..., None].int() & self.mask) != 0).to(self.dtype) | |
codes = self.bits_to_codes(bits) | |
codes = rearrange(codes, "... c d -> ... (c d)") | |
# whether to project codes out to original dimensions | |
# if the input feature dimensions were not log2(codebook size) | |
if project_out: | |
codes = self.project_out(codes) | |
# rearrange codes back to original shape | |
if is_img_or_video: | |
codes = rearrange(codes, "b ... d -> b d ...") | |
return codes | |
def forward( | |
self, | |
x, | |
inv_temperature=100.0, | |
return_loss_breakdown=False, | |
mask=None, | |
): | |
""" | |
einstein notation | |
b - batch | |
n - sequence (or flattened spatial dimensions) | |
d - feature dimension, which is also log2(codebook size) | |
c - number of codebook dim | |
""" | |
x = x.float() | |
is_img_or_video = x.ndim >= 4 | |
# standardize image or video into (batch, seq, dimension) | |
if is_img_or_video: | |
x = rearrange(x, "b d ... -> b ... d") | |
x, ps = pack_one(x, "b * d") | |
assert x.shape[-1] == self.dim, f"expected dimension of {self.dim} but received {x.shape[-1]}" | |
x = self.project_in(x) | |
# split out number of codebooks | |
x = rearrange(x, "b n (c d) -> b n c d", c=self.num_codebooks) | |
# quantize by eq 3. | |
original_input = x | |
codebook_value = torch.ones_like(x) * self.codebook_scale | |
quantized = torch.where(x > 0, codebook_value, -codebook_value) | |
# use straight-through gradients (optionally with custom activation fn) if training | |
if self.training: | |
x = self.activation(x) | |
x = x + (quantized - x).detach() | |
else: | |
x = quantized | |
# calculate indices | |
indices = reduce((x > 0).int() * self.mask.int(), "b n c d -> b n c", "sum") | |
# entropy aux loss | |
if self.training: | |
# the same as euclidean distance up to a constant | |
distance = -2 * einsum("... i d, j d -> ... i j", original_input, self.codebook) | |
prob = (-distance * inv_temperature).softmax(dim=-1) | |
# account for mask | |
if exists(mask): | |
prob = prob[mask] | |
else: | |
prob = rearrange(prob, "b n ... -> (b n) ...") | |
# whether to only use a fraction of probs, for reducing memory | |
if self.frac_per_sample_entropy < 1.0: | |
num_tokens = prob.shape[0] | |
num_sampled_tokens = int(num_tokens * self.frac_per_sample_entropy) | |
rand_mask = torch.randn(num_tokens).argsort(dim=-1) < num_sampled_tokens | |
per_sample_probs = prob[rand_mask] | |
else: | |
per_sample_probs = prob | |
# calculate per sample entropy | |
per_sample_entropy = entropy(per_sample_probs).mean() | |
# distribution over all available tokens in the batch | |
avg_prob = reduce(per_sample_probs, "... c d -> c d", "mean") | |
codebook_entropy = entropy(avg_prob).mean() | |
# 1. entropy will be nudged to be low for each code, to encourage the network to output confident predictions | |
# 2. codebook entropy will be nudged to be high, to encourage all codes to be uniformly used within the batch | |
entropy_aux_loss = per_sample_entropy - self.diversity_gamma * codebook_entropy | |
else: | |
# if not training, just return dummy 0 | |
entropy_aux_loss = per_sample_entropy = codebook_entropy = self.zero | |
# commit loss | |
if self.training: | |
commit_loss = F.mse_loss(original_input, quantized.detach(), reduction="none") | |
if exists(mask): | |
commit_loss = commit_loss[mask] | |
commit_loss = commit_loss.mean() | |
else: | |
commit_loss = self.zero | |
# merge back codebook dim | |
x = rearrange(x, "b n c d -> b n (c d)") | |
# project out to feature dimension if needed | |
x = self.project_out(x) | |
# reconstitute image or video dimensions | |
if is_img_or_video: | |
x = unpack_one(x, ps, "b * d") | |
x = rearrange(x, "b ... d -> b d ...") | |
indices = unpack_one(indices, ps, "b * c") | |
# whether to remove single codebook dim | |
if not self.keep_num_codebooks_dim: | |
indices = rearrange(indices, "... 1 -> ...") | |
# complete aux loss | |
aux_loss = entropy_aux_loss * self.entropy_loss_weight + commit_loss * self.commitment_loss_weight | |
ret = Return(x, indices, aux_loss) | |
if not return_loss_breakdown: | |
return ret | |
return ret, LossBreakdown(per_sample_entropy, codebook_entropy, commit_loss) | |