Spaces:
Runtime error
Runtime error
import copy | |
from pathlib import Path | |
from math import log2, ceil, sqrt | |
from functools import wraps, partial | |
import torch | |
import torch.nn.functional as F | |
from torch.cuda.amp import autocast | |
from torch import nn, einsum, Tensor | |
from torch.nn import Module, ModuleList | |
from torch.autograd import grad as torch_grad | |
import torchvision | |
from torchvision.models import VGG16_Weights | |
from collections import namedtuple | |
# from vector_quantize_pytorch import LFQ, FSQ | |
from .regularizers.finite_scalar_quantization import FSQ | |
from .regularizers.lookup_free_quantization import LFQ | |
from einops import rearrange, repeat, reduce, pack, unpack | |
from einops.layers.torch import Rearrange | |
from beartype import beartype | |
from beartype.typing import Union, Tuple, Optional, List | |
from magvit2_pytorch.attend import Attend | |
from magvit2_pytorch.version import __version__ | |
from gateloop_transformer import SimpleGateLoopLayer | |
from taylor_series_linear_attention import TaylorSeriesLinearAttn | |
from kornia.filters import filter3d | |
import pickle | |
# helper | |
def exists(v): | |
return v is not None | |
def default(v, d): | |
return v if exists(v) else d | |
def safe_get_index(it, ind, default=None): | |
if ind < len(it): | |
return it[ind] | |
return default | |
def pair(t): | |
return t if isinstance(t, tuple) else (t, t) | |
def identity(t, *args, **kwargs): | |
return t | |
def divisible_by(num, den): | |
return (num % den) == 0 | |
def pack_one(t, pattern): | |
return pack([t], pattern) | |
def unpack_one(t, ps, pattern): | |
return unpack(t, ps, pattern)[0] | |
def append_dims(t, ndims: int): | |
return t.reshape(*t.shape, *((1,) * ndims)) | |
def is_odd(n): | |
return not divisible_by(n, 2) | |
def maybe_del_attr_(o, attr): | |
if hasattr(o, attr): | |
delattr(o, attr) | |
def cast_tuple(t, length=1): | |
return t if isinstance(t, tuple) else ((t,) * length) | |
# tensor helpers | |
def l2norm(t): | |
return F.normalize(t, dim=-1, p=2) | |
def pad_at_dim(t, pad, dim=-1, value=0.0): | |
dims_from_right = (-dim - 1) if dim < 0 else (t.ndim - dim - 1) | |
zeros = (0, 0) * dims_from_right | |
return F.pad(t, (*zeros, *pad), value=value) | |
def pick_video_frame(video, frame_indices): | |
batch, device = video.shape[0], video.device | |
video = rearrange(video, "b c f ... -> b f c ...") | |
batch_indices = torch.arange(batch, device=device) | |
batch_indices = rearrange(batch_indices, "b -> b 1") | |
images = video[batch_indices, frame_indices] | |
images = rearrange(images, "b 1 c ... -> b c ...") | |
return images | |
# gan related | |
def gradient_penalty(images, output): | |
batch_size = images.shape[0] | |
gradients = torch_grad( | |
outputs=output, | |
inputs=images, | |
grad_outputs=torch.ones(output.size(), device=images.device), | |
create_graph=True, | |
retain_graph=True, | |
only_inputs=True, | |
)[0] | |
gradients = rearrange(gradients, "b ... -> b (...)") | |
return ((gradients.norm(2, dim=1) - 1) ** 2).mean() | |
def leaky_relu(p=0.1): | |
return nn.LeakyReLU(p) | |
def hinge_discr_loss(fake, real): | |
return (F.relu(1 + fake) + F.relu(1 - real)).mean() | |
def hinge_gen_loss(fake): | |
return -fake.mean() | |
def grad_layer_wrt_loss(loss: Tensor, layer: nn.Parameter): | |
return torch_grad(outputs=loss, inputs=layer, grad_outputs=torch.ones_like(loss), retain_graph=True)[0].detach() | |
# helper decorators | |
def remove_vgg(fn): | |
def inner(self, *args, **kwargs): | |
has_vgg = hasattr(self, "vgg") | |
if has_vgg: | |
vgg = self.vgg | |
delattr(self, "vgg") | |
out = fn(self, *args, **kwargs) | |
if has_vgg: | |
self.vgg = vgg | |
return out | |
return inner | |
# helper classes | |
def Sequential(*modules): | |
modules = [*filter(exists, modules)] | |
if len(modules) == 0: | |
return nn.Identity() | |
return nn.Sequential(*modules) | |
class Residual(Module): | |
def __init__(self, fn: Module): | |
super().__init__() | |
self.fn = fn | |
def forward(self, x, **kwargs): | |
return self.fn(x, **kwargs) + x | |
# for a bunch of tensor operations to change tensor to (batch, time, feature dimension) and back | |
class ToTimeSequence(Module): | |
def __init__(self, fn: Module): | |
super().__init__() | |
self.fn = fn | |
def forward(self, x, **kwargs): | |
x = rearrange(x, "b c f ... -> b ... f c") | |
x, ps = pack_one(x, "* n c") | |
o = self.fn(x, **kwargs) | |
o = unpack_one(o, ps, "* n c") | |
return rearrange(o, "b ... f c -> b c f ...") | |
class SqueezeExcite(Module): | |
# global context network - attention-esque squeeze-excite variant (https://arxiv.org/abs/2012.13375) | |
def __init__(self, dim, *, dim_out=None, dim_hidden_min=16, init_bias=-10): | |
super().__init__() | |
dim_out = default(dim_out, dim) | |
self.to_k = nn.Conv2d(dim, 1, 1) | |
dim_hidden = max(dim_hidden_min, dim_out // 2) | |
self.net = nn.Sequential( | |
nn.Conv2d(dim, dim_hidden, 1), nn.LeakyReLU(0.1), nn.Conv2d(dim_hidden, dim_out, 1), nn.Sigmoid() | |
) | |
nn.init.zeros_(self.net[-2].weight) | |
nn.init.constant_(self.net[-2].bias, init_bias) | |
def forward(self, x): | |
orig_input, batch = x, x.shape[0] | |
is_video = x.ndim == 5 | |
if is_video: | |
x = rearrange(x, "b c f h w -> (b f) c h w") | |
context = self.to_k(x) | |
context = rearrange(context, "b c h w -> b c (h w)").softmax(dim=-1) | |
spatial_flattened_input = rearrange(x, "b c h w -> b c (h w)") | |
out = einsum("b i n, b c n -> b c i", context, spatial_flattened_input) | |
out = rearrange(out, "... -> ... 1") | |
gates = self.net(out) | |
if is_video: | |
gates = rearrange(gates, "(b f) c h w -> b c f h w", b=batch) | |
return gates * orig_input | |
# token shifting | |
class TokenShift(Module): | |
def __init__(self, fn: Module): | |
super().__init__() | |
self.fn = fn | |
def forward(self, x, **kwargs): | |
x, x_shift = x.chunk(2, dim=1) | |
x_shift = pad_at_dim(x_shift, (1, -1), dim=2) # shift time dimension | |
x = torch.cat((x, x_shift), dim=1) | |
return self.fn(x, **kwargs) | |
# rmsnorm | |
class RMSNorm(Module): | |
def __init__(self, dim, channel_first=False, images=False, bias=False): | |
super().__init__() | |
broadcastable_dims = (1, 1, 1) if not images else (1, 1) | |
shape = (dim, *broadcastable_dims) if channel_first else (dim,) | |
self.channel_first = channel_first | |
self.scale = dim**0.5 | |
self.gamma = nn.Parameter(torch.ones(shape)) | |
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0 | |
def forward(self, x): | |
return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias | |
class AdaptiveRMSNorm(Module): | |
def __init__(self, dim, *, dim_cond, channel_first=False, images=False, bias=False): | |
super().__init__() | |
broadcastable_dims = (1, 1, 1) if not images else (1, 1) | |
shape = (dim, *broadcastable_dims) if channel_first else (dim,) | |
self.dim_cond = dim_cond | |
self.channel_first = channel_first | |
self.scale = dim**0.5 | |
self.to_gamma = nn.Linear(dim_cond, dim) | |
self.to_bias = nn.Linear(dim_cond, dim) if bias else None | |
nn.init.zeros_(self.to_gamma.weight) | |
nn.init.ones_(self.to_gamma.bias) | |
if bias: | |
nn.init.zeros_(self.to_bias.weight) | |
nn.init.zeros_(self.to_bias.bias) | |
def forward(self, x: Tensor, *, cond: Tensor): | |
batch = x.shape[0] | |
assert cond.shape == (batch, self.dim_cond) | |
gamma = self.to_gamma(cond) | |
bias = 0.0 | |
if exists(self.to_bias): | |
bias = self.to_bias(cond) | |
if self.channel_first: | |
gamma = append_dims(gamma, x.ndim - 2) | |
if exists(self.to_bias): | |
bias = append_dims(bias, x.ndim - 2) | |
return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * gamma + bias | |
# attention | |
class Attention(Module): | |
def __init__( | |
self, | |
*, | |
dim, | |
dim_cond: Optional[int] = None, | |
causal=False, | |
dim_head=32, | |
heads=8, | |
flash=False, | |
dropout=0.0, | |
num_memory_kv=4, | |
): | |
super().__init__() | |
dim_inner = dim_head * heads | |
self.need_cond = exists(dim_cond) | |
if self.need_cond: | |
self.norm = AdaptiveRMSNorm(dim, dim_cond=dim_cond) | |
else: | |
self.norm = RMSNorm(dim) | |
self.to_qkv = nn.Sequential( | |
nn.Linear(dim, dim_inner * 3, bias=False), Rearrange("b n (qkv h d) -> qkv b h n d", qkv=3, h=heads) | |
) | |
assert num_memory_kv > 0 | |
self.mem_kv = nn.Parameter(torch.randn(2, heads, num_memory_kv, dim_head)) | |
self.attend = Attend(causal=causal, dropout=dropout, flash=flash) | |
self.to_out = nn.Sequential(Rearrange("b h n d -> b n (h d)"), nn.Linear(dim_inner, dim, bias=False)) | |
def forward(self, x, mask: Optional[Tensor] = None, cond: Optional[Tensor] = None): | |
maybe_cond_kwargs = dict(cond=cond) if self.need_cond else dict() | |
x = self.norm(x, **maybe_cond_kwargs) | |
q, k, v = self.to_qkv(x) | |
mk, mv = map(lambda t: repeat(t, "h n d -> b h n d", b=q.shape[0]), self.mem_kv) | |
k = torch.cat((mk, k), dim=-2) | |
v = torch.cat((mv, v), dim=-2) | |
out = self.attend(q, k, v, mask=mask) | |
return self.to_out(out) | |
class LinearAttention(Module): | |
""" | |
using the specific linear attention proposed in https://arxiv.org/abs/2106.09681 | |
""" | |
def __init__(self, *, dim, dim_cond: Optional[int] = None, dim_head=8, heads=8, dropout=0.0): | |
super().__init__() | |
dim_inner = dim_head * heads | |
self.need_cond = exists(dim_cond) | |
if self.need_cond: | |
self.norm = AdaptiveRMSNorm(dim, dim_cond=dim_cond) | |
else: | |
self.norm = RMSNorm(dim) | |
self.attn = TaylorSeriesLinearAttn(dim=dim, dim_head=dim_head, heads=heads) | |
def forward(self, x, cond: Optional[Tensor] = None): | |
maybe_cond_kwargs = dict(cond=cond) if self.need_cond else dict() | |
x = self.norm(x, **maybe_cond_kwargs) | |
return self.attn(x) | |
class LinearSpaceAttention(LinearAttention): | |
def forward(self, x, *args, **kwargs): | |
x = rearrange(x, "b c ... h w -> b ... h w c") | |
x, batch_ps = pack_one(x, "* h w c") | |
x, seq_ps = pack_one(x, "b * c") | |
x = super().forward(x, *args, **kwargs) | |
x = unpack_one(x, seq_ps, "b * c") | |
x = unpack_one(x, batch_ps, "* h w c") | |
return rearrange(x, "b ... h w c -> b c ... h w") | |
class SpaceAttention(Attention): | |
def forward(self, x, *args, **kwargs): | |
x = rearrange(x, "b c t h w -> b t h w c") | |
x, batch_ps = pack_one(x, "* h w c") | |
x, seq_ps = pack_one(x, "b * c") | |
x = super().forward(x, *args, **kwargs) | |
x = unpack_one(x, seq_ps, "b * c") | |
x = unpack_one(x, batch_ps, "* h w c") | |
return rearrange(x, "b t h w c -> b c t h w") | |
class TimeAttention(Attention): | |
def forward(self, x, *args, **kwargs): | |
x = rearrange(x, "b c t h w -> b h w t c") | |
x, batch_ps = pack_one(x, "* t c") | |
x = super().forward(x, *args, **kwargs) | |
x = unpack_one(x, batch_ps, "* t c") | |
return rearrange(x, "b h w t c -> b c t h w") | |
class GEGLU(Module): | |
def forward(self, x): | |
x, gate = x.chunk(2, dim=1) | |
return F.gelu(gate) * x | |
class FeedForward(Module): | |
def __init__(self, dim, *, dim_cond: Optional[int] = None, mult=4, images=False): | |
super().__init__() | |
conv_klass = nn.Conv2d if images else nn.Conv3d | |
rmsnorm_klass = RMSNorm if not exists(dim_cond) else partial(AdaptiveRMSNorm, dim_cond=dim_cond) | |
maybe_adaptive_norm_klass = partial(rmsnorm_klass, channel_first=True, images=images) | |
dim_inner = int(dim * mult * 2 / 3) | |
self.norm = maybe_adaptive_norm_klass(dim) | |
self.net = Sequential(conv_klass(dim, dim_inner * 2, 1), GEGLU(), conv_klass(dim_inner, dim, 1)) | |
def forward(self, x: Tensor, *, cond: Optional[Tensor] = None): | |
maybe_cond_kwargs = dict(cond=cond) if exists(cond) else dict() | |
x = self.norm(x, **maybe_cond_kwargs) | |
return self.net(x) | |
# discriminator with anti-aliased downsampling (blurpool Zhang et al.) | |
class Blur(Module): | |
def __init__(self): | |
super().__init__() | |
f = torch.Tensor([1, 2, 1]) | |
self.register_buffer("f", f) | |
def forward(self, x, space_only=False, time_only=False): | |
assert not (space_only and time_only) | |
f = self.f | |
if space_only: | |
f = einsum("i, j -> i j", f, f) | |
f = rearrange(f, "... -> 1 1 ...") | |
elif time_only: | |
f = rearrange(f, "f -> 1 f 1 1") | |
else: | |
f = einsum("i, j, k -> i j k", f, f, f) | |
f = rearrange(f, "... -> 1 ...") | |
is_images = x.ndim == 4 | |
if is_images: | |
x = rearrange(x, "b c h w -> b c 1 h w") | |
out = filter3d(x, f, normalized=True) | |
if is_images: | |
out = rearrange(out, "b c 1 h w -> b c h w") | |
return out | |
class DiscriminatorBlock(Module): | |
def __init__(self, input_channels, filters, downsample=True, antialiased_downsample=True): | |
super().__init__() | |
self.conv_res = nn.Conv2d(input_channels, filters, 1, stride=(2 if downsample else 1)) | |
self.net = nn.Sequential( | |
nn.Conv2d(input_channels, filters, 3, padding=1), | |
leaky_relu(), | |
nn.Conv2d(filters, filters, 3, padding=1), | |
leaky_relu(), | |
) | |
self.maybe_blur = Blur() if antialiased_downsample else None | |
self.downsample = ( | |
nn.Sequential( | |
Rearrange("b c (h p1) (w p2) -> b (c p1 p2) h w", p1=2, p2=2), nn.Conv2d(filters * 4, filters, 1) | |
) | |
if downsample | |
else None | |
) | |
def forward(self, x): | |
res = self.conv_res(x) | |
x = self.net(x) | |
if exists(self.downsample): | |
if exists(self.maybe_blur): | |
x = self.maybe_blur(x, space_only=True) | |
x = self.downsample(x) | |
x = (x + res) * (2**-0.5) | |
return x | |
class Discriminator(Module): | |
def __init__( | |
self, | |
*, | |
dim, | |
image_size, | |
channels=3, | |
max_dim=512, | |
attn_heads=8, | |
attn_dim_head=32, | |
linear_attn_dim_head=8, | |
linear_attn_heads=16, | |
ff_mult=4, | |
antialiased_downsample=False, | |
): | |
super().__init__() | |
image_size = pair(image_size) | |
min_image_resolution = min(image_size) | |
num_layers = int(log2(min_image_resolution) - 2) | |
blocks = [] | |
layer_dims = [channels] + [(dim * 4) * (2**i) for i in range(num_layers + 1)] | |
layer_dims = [min(layer_dim, max_dim) for layer_dim in layer_dims] | |
layer_dims_in_out = tuple(zip(layer_dims[:-1], layer_dims[1:])) | |
blocks = [] | |
attn_blocks = [] | |
image_resolution = min_image_resolution | |
for ind, (in_chan, out_chan) in enumerate(layer_dims_in_out): | |
num_layer = ind + 1 | |
is_not_last = ind != (len(layer_dims_in_out) - 1) | |
block = DiscriminatorBlock( | |
in_chan, out_chan, downsample=is_not_last, antialiased_downsample=antialiased_downsample | |
) | |
attn_block = Sequential( | |
Residual(LinearSpaceAttention(dim=out_chan, heads=linear_attn_heads, dim_head=linear_attn_dim_head)), | |
Residual(FeedForward(dim=out_chan, mult=ff_mult, images=True)), | |
) | |
blocks.append(ModuleList([block, attn_block])) | |
image_resolution //= 2 | |
self.blocks = ModuleList(blocks) | |
dim_last = layer_dims[-1] | |
downsample_factor = 2**num_layers | |
last_fmap_size = tuple(map(lambda n: n // downsample_factor, image_size)) | |
latent_dim = last_fmap_size[0] * last_fmap_size[1] * dim_last | |
self.to_logits = Sequential( | |
nn.Conv2d(dim_last, dim_last, 3, padding=1), | |
leaky_relu(), | |
Rearrange("b ... -> b (...)"), | |
nn.Linear(latent_dim, 1), | |
Rearrange("b 1 -> b"), | |
) | |
def forward(self, x): | |
for block, attn_block in self.blocks: | |
x = block(x) | |
x = attn_block(x) | |
return self.to_logits(x) | |
# modulatable conv from Karras et al. Stylegan2 | |
# for conditioning on latents | |
class Conv3DMod(Module): | |
def __init__( | |
self, dim, *, spatial_kernel, time_kernel, causal=True, dim_out=None, demod=True, eps=1e-8, pad_mode="zeros" | |
): | |
super().__init__() | |
dim_out = default(dim_out, dim) | |
self.eps = eps | |
assert is_odd(spatial_kernel) and is_odd(time_kernel) | |
self.spatial_kernel = spatial_kernel | |
self.time_kernel = time_kernel | |
time_padding = (time_kernel - 1, 0) if causal else ((time_kernel // 2,) * 2) | |
self.pad_mode = pad_mode | |
self.padding = (*((spatial_kernel // 2,) * 4), *time_padding) | |
self.weights = nn.Parameter(torch.randn((dim_out, dim, time_kernel, spatial_kernel, spatial_kernel))) | |
self.demod = demod | |
nn.init.kaiming_normal_(self.weights, a=0, mode="fan_in", nonlinearity="selu") | |
def forward(self, fmap, cond: Tensor): | |
""" | |
notation | |
b - batch | |
n - convs | |
o - output | |
i - input | |
k - kernel | |
""" | |
b = fmap.shape[0] | |
# prepare weights for modulation | |
weights = self.weights | |
# do the modulation, demodulation, as done in stylegan2 | |
cond = rearrange(cond, "b i -> b 1 i 1 1 1") | |
weights = weights * (cond + 1) | |
if self.demod: | |
inv_norm = reduce(weights**2, "b o i k0 k1 k2 -> b o 1 1 1 1", "sum").clamp(min=self.eps).rsqrt() | |
weights = weights * inv_norm | |
fmap = rearrange(fmap, "b c t h w -> 1 (b c) t h w") | |
weights = rearrange(weights, "b o ... -> (b o) ...") | |
fmap = F.pad(fmap, self.padding, mode=self.pad_mode) | |
fmap = F.conv3d(fmap, weights, groups=b) | |
return rearrange(fmap, "1 (b o) ... -> b o ...", b=b) | |
# strided conv downsamples | |
class SpatialDownsample2x(Module): | |
def __init__(self, dim, dim_out=None, kernel_size=3, antialias=False): | |
super().__init__() | |
dim_out = default(dim_out, dim) | |
self.maybe_blur = Blur() if antialias else identity | |
self.conv = nn.Conv2d(dim, dim_out, kernel_size, stride=2, padding=kernel_size // 2) | |
def forward(self, x): | |
x = self.maybe_blur(x, space_only=True) | |
x = rearrange(x, "b c t h w -> b t c h w") | |
x, ps = pack_one(x, "* c h w") | |
out = self.conv(x) | |
out = unpack_one(out, ps, "* c h w") | |
out = rearrange(out, "b t c h w -> b c t h w") | |
return out | |
class TimeDownsample2x(Module): | |
def __init__(self, dim, dim_out=None, kernel_size=3, antialias=False): | |
super().__init__() | |
dim_out = default(dim_out, dim) | |
self.maybe_blur = Blur() if antialias else identity | |
self.time_causal_padding = (kernel_size - 1, 0) | |
self.conv = nn.Conv1d(dim, dim_out, kernel_size, stride=2) | |
def forward(self, x): | |
x = self.maybe_blur(x, time_only=True) | |
x = rearrange(x, "b c t h w -> b h w c t") | |
x, ps = pack_one(x, "* c t") | |
x = F.pad(x, self.time_causal_padding) | |
out = self.conv(x) | |
out = unpack_one(out, ps, "* c t") | |
out = rearrange(out, "b h w c t -> b c t h w") | |
return out | |
# depth to space upsamples | |
class SpatialUpsample2x(Module): | |
def __init__(self, dim, dim_out=None): | |
super().__init__() | |
dim_out = default(dim_out, dim) | |
conv = nn.Conv2d(dim, dim_out * 4, 1) | |
self.net = nn.Sequential(conv, nn.SiLU(), Rearrange("b (c p1 p2) h w -> b c (h p1) (w p2)", p1=2, p2=2)) | |
self.init_conv_(conv) | |
def init_conv_(self, conv): | |
o, i, h, w = conv.weight.shape | |
conv_weight = torch.empty(o // 4, i, h, w) | |
nn.init.kaiming_uniform_(conv_weight) | |
conv_weight = repeat(conv_weight, "o ... -> (o 4) ...") | |
conv.weight.data.copy_(conv_weight) | |
nn.init.zeros_(conv.bias.data) | |
def forward(self, x): | |
x = rearrange(x, "b c t h w -> b t c h w") | |
x, ps = pack_one(x, "* c h w") | |
out = self.net(x) | |
out = unpack_one(out, ps, "* c h w") | |
out = rearrange(out, "b t c h w -> b c t h w") | |
return out | |
class TimeUpsample2x(Module): | |
def __init__(self, dim, dim_out=None): | |
super().__init__() | |
dim_out = default(dim_out, dim) | |
conv = nn.Conv1d(dim, dim_out * 2, 1) | |
self.net = nn.Sequential(conv, nn.SiLU(), Rearrange("b (c p) t -> b c (t p)", p=2)) | |
self.init_conv_(conv) | |
def init_conv_(self, conv): | |
o, i, t = conv.weight.shape | |
conv_weight = torch.empty(o // 2, i, t) | |
nn.init.kaiming_uniform_(conv_weight) | |
conv_weight = repeat(conv_weight, "o ... -> (o 2) ...") | |
conv.weight.data.copy_(conv_weight) | |
nn.init.zeros_(conv.bias.data) | |
def forward(self, x): | |
x = rearrange(x, "b c t h w -> b h w c t") | |
x, ps = pack_one(x, "* c t") | |
out = self.net(x) | |
out = unpack_one(out, ps, "* c t") | |
out = rearrange(out, "b h w c t -> b c t h w") | |
return out | |
# autoencoder - only best variant here offered, with causal conv 3d | |
def SameConv2d(dim_in, dim_out, kernel_size): | |
kernel_size = cast_tuple(kernel_size, 2) | |
padding = [k // 2 for k in kernel_size] | |
return nn.Conv2d(dim_in, dim_out, kernel_size=kernel_size, padding=padding) | |
class CausalConv3d(Module): | |
def __init__( | |
self, chan_in, chan_out, kernel_size: Union[int, Tuple[int, int, int]], pad_mode="constant", **kwargs | |
): | |
super().__init__() | |
kernel_size = cast_tuple(kernel_size, 3) | |
time_kernel_size, height_kernel_size, width_kernel_size = kernel_size | |
assert is_odd(height_kernel_size) and is_odd(width_kernel_size) | |
dilation = kwargs.pop("dilation", 1) | |
stride = kwargs.pop("stride", 1) | |
self.pad_mode = pad_mode | |
time_pad = dilation * (time_kernel_size - 1) + (1 - stride) | |
height_pad = height_kernel_size // 2 | |
width_pad = width_kernel_size // 2 | |
self.time_pad = time_pad | |
self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0) | |
stride = (stride, 1, 1) | |
dilation = (dilation, 1, 1) | |
self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs) | |
def forward(self, x): | |
pad_mode = self.pad_mode if self.time_pad < x.shape[2] else "constant" | |
x = F.pad(x, self.time_causal_padding, mode=pad_mode) | |
return self.conv(x) | |
def ResidualUnit(dim, kernel_size: Union[int, Tuple[int, int, int]], pad_mode: str = "constant"): | |
net = Sequential( | |
CausalConv3d(dim, dim, kernel_size, pad_mode=pad_mode), | |
nn.ELU(), | |
nn.Conv3d(dim, dim, 1), | |
nn.ELU(), | |
SqueezeExcite(dim), | |
) | |
return Residual(net) | |
class ResidualUnitMod(Module): | |
def __init__( | |
self, dim, kernel_size: Union[int, Tuple[int, int, int]], *, dim_cond, pad_mode: str = "constant", demod=True | |
): | |
super().__init__() | |
kernel_size = cast_tuple(kernel_size, 3) | |
time_kernel_size, height_kernel_size, width_kernel_size = kernel_size | |
assert height_kernel_size == width_kernel_size | |
self.to_cond = nn.Linear(dim_cond, dim) | |
self.conv = Conv3DMod( | |
dim=dim, | |
spatial_kernel=height_kernel_size, | |
time_kernel=time_kernel_size, | |
causal=True, | |
demod=demod, | |
pad_mode=pad_mode, | |
) | |
self.conv_out = nn.Conv3d(dim, dim, 1) | |
def forward( | |
self, | |
x, | |
cond: Tensor, | |
): | |
res = x | |
cond = self.to_cond(cond) | |
x = self.conv(x, cond=cond) | |
x = F.elu(x) | |
x = self.conv_out(x) | |
x = F.elu(x) | |
return x + res | |
class CausalConvTranspose3d(Module): | |
def __init__(self, chan_in, chan_out, kernel_size: Union[int, Tuple[int, int, int]], *, time_stride, **kwargs): | |
super().__init__() | |
kernel_size = cast_tuple(kernel_size, 3) | |
time_kernel_size, height_kernel_size, width_kernel_size = kernel_size | |
assert is_odd(height_kernel_size) and is_odd(width_kernel_size) | |
self.upsample_factor = time_stride | |
height_pad = height_kernel_size // 2 | |
width_pad = width_kernel_size // 2 | |
stride = (time_stride, 1, 1) | |
padding = (0, height_pad, width_pad) | |
self.conv = nn.ConvTranspose3d(chan_in, chan_out, kernel_size, stride, padding=padding, **kwargs) | |
def forward(self, x): | |
assert x.ndim == 5 | |
t = x.shape[2] | |
out = self.conv(x) | |
out = out[..., : (t * self.upsample_factor), :, :] | |
return out | |
# video tokenizer class | |
LossBreakdown = namedtuple( | |
"LossBreakdown", | |
[ | |
"recon_loss", | |
"lfq_aux_loss", | |
"quantizer_loss_breakdown", | |
"perceptual_loss", | |
"adversarial_gen_loss", | |
"adaptive_adversarial_weight", | |
"multiscale_gen_losses", | |
"multiscale_gen_adaptive_weights", | |
], | |
) | |
DiscrLossBreakdown = namedtuple("DiscrLossBreakdown", ["discr_loss", "multiscale_discr_losses", "gradient_penalty"]) | |
class VideoTokenizer(Module): | |
def __init__( | |
self, | |
*, | |
image_size, | |
layers: Tuple[Union[str, Tuple[str, int]], ...] = ("residual", "residual", "residual"), | |
residual_conv_kernel_size=3, | |
num_codebooks=1, | |
codebook_size: Optional[int] = None, | |
channels=3, | |
init_dim=64, | |
max_dim=float("inf"), | |
dim_cond=None, | |
dim_cond_expansion_factor=4.0, | |
input_conv_kernel_size: Tuple[int, int, int] = (7, 7, 7), | |
output_conv_kernel_size: Tuple[int, int, int] = (3, 3, 3), | |
pad_mode: str = "constant", | |
lfq_entropy_loss_weight=0.1, | |
lfq_commitment_loss_weight=1.0, | |
lfq_diversity_gamma=2.5, | |
quantizer_aux_loss_weight=1.0, | |
lfq_activation=nn.Identity(), | |
use_fsq=False, | |
fsq_levels: Optional[List[int]] = None, | |
attn_dim_head=32, | |
attn_heads=8, | |
attn_dropout=0.0, | |
linear_attn_dim_head=8, | |
linear_attn_heads=16, | |
vgg: Optional[Module] = None, | |
vgg_weights: VGG16_Weights = VGG16_Weights.DEFAULT, | |
perceptual_loss_weight=1e-1, | |
discr_kwargs: Optional[dict] = None, | |
multiscale_discrs: Tuple[Module, ...] = tuple(), | |
use_gan=True, | |
adversarial_loss_weight=1.0, | |
grad_penalty_loss_weight=10.0, | |
multiscale_adversarial_loss_weight=1.0, | |
flash_attn=True, | |
separate_first_frame_encoding=False, | |
): | |
super().__init__() | |
# for autosaving the config | |
_locals = locals() | |
_locals.pop("self", None) | |
_locals.pop("__class__", None) | |
self._configs = pickle.dumps(_locals) | |
# image size | |
self.channels = channels | |
self.image_size = image_size | |
# initial encoder | |
self.conv_in = CausalConv3d(channels, init_dim, input_conv_kernel_size, pad_mode=pad_mode) | |
# whether to encode the first frame separately or not | |
self.conv_in_first_frame = nn.Identity() | |
self.conv_out_first_frame = nn.Identity() | |
if separate_first_frame_encoding: | |
self.conv_in_first_frame = SameConv2d(channels, init_dim, input_conv_kernel_size[-2:]) | |
self.conv_out_first_frame = SameConv2d(init_dim, channels, output_conv_kernel_size[-2:]) | |
self.separate_first_frame_encoding = separate_first_frame_encoding | |
# encoder and decoder layers | |
self.encoder_layers = ModuleList([]) | |
self.decoder_layers = ModuleList([]) | |
self.conv_out = CausalConv3d(init_dim, channels, output_conv_kernel_size, pad_mode=pad_mode) | |
dim = init_dim | |
dim_out = dim | |
layer_fmap_size = image_size | |
time_downsample_factor = 1 | |
has_cond_across_layers = [] | |
for layer_def in layers: | |
layer_type, *layer_params = cast_tuple(layer_def) | |
has_cond = False | |
if layer_type == "residual": | |
encoder_layer = ResidualUnit(dim, residual_conv_kernel_size) | |
decoder_layer = ResidualUnit(dim, residual_conv_kernel_size) | |
elif layer_type == "consecutive_residual": | |
(num_consecutive,) = layer_params | |
encoder_layer = Sequential( | |
*[ResidualUnit(dim, residual_conv_kernel_size) for _ in range(num_consecutive)] | |
) | |
decoder_layer = Sequential( | |
*[ResidualUnit(dim, residual_conv_kernel_size) for _ in range(num_consecutive)] | |
) | |
elif layer_type == "cond_residual": | |
assert exists( | |
dim_cond | |
), "dim_cond must be passed into VideoTokenizer, if tokenizer is to be conditioned" | |
has_cond = True | |
encoder_layer = ResidualUnitMod( | |
dim, residual_conv_kernel_size, dim_cond=int(dim_cond * dim_cond_expansion_factor) | |
) | |
decoder_layer = ResidualUnitMod( | |
dim, residual_conv_kernel_size, dim_cond=int(dim_cond * dim_cond_expansion_factor) | |
) | |
dim_out = dim | |
elif layer_type == "compress_space": | |
dim_out = safe_get_index(layer_params, 0) | |
dim_out = default(dim_out, dim * 2) | |
dim_out = min(dim_out, max_dim) | |
encoder_layer = SpatialDownsample2x(dim, dim_out) | |
decoder_layer = SpatialUpsample2x(dim_out, dim) | |
assert layer_fmap_size > 1 | |
layer_fmap_size //= 2 | |
elif layer_type == "compress_time": | |
dim_out = safe_get_index(layer_params, 0) | |
dim_out = default(dim_out, dim * 2) | |
dim_out = min(dim_out, max_dim) | |
encoder_layer = TimeDownsample2x(dim, dim_out) | |
decoder_layer = TimeUpsample2x(dim_out, dim) | |
time_downsample_factor *= 2 | |
elif layer_type == "attend_space": | |
attn_kwargs = dict( | |
dim=dim, dim_head=attn_dim_head, heads=attn_heads, dropout=attn_dropout, flash=flash_attn | |
) | |
encoder_layer = Sequential(Residual(SpaceAttention(**attn_kwargs)), Residual(FeedForward(dim))) | |
decoder_layer = Sequential(Residual(SpaceAttention(**attn_kwargs)), Residual(FeedForward(dim))) | |
elif layer_type == "linear_attend_space": | |
linear_attn_kwargs = dict(dim=dim, dim_head=linear_attn_dim_head, heads=linear_attn_heads) | |
encoder_layer = Sequential( | |
Residual(LinearSpaceAttention(**linear_attn_kwargs)), Residual(FeedForward(dim)) | |
) | |
decoder_layer = Sequential( | |
Residual(LinearSpaceAttention(**linear_attn_kwargs)), Residual(FeedForward(dim)) | |
) | |
elif layer_type == "gateloop_time": | |
gateloop_kwargs = dict(use_heinsen=False) | |
encoder_layer = ToTimeSequence(Residual(SimpleGateLoopLayer(dim=dim))) | |
decoder_layer = ToTimeSequence(Residual(SimpleGateLoopLayer(dim=dim))) | |
elif layer_type == "attend_time": | |
attn_kwargs = dict( | |
dim=dim, | |
dim_head=attn_dim_head, | |
heads=attn_heads, | |
dropout=attn_dropout, | |
causal=True, | |
flash=flash_attn, | |
) | |
encoder_layer = Sequential( | |
Residual(TokenShift(TimeAttention(**attn_kwargs))), | |
Residual(TokenShift(FeedForward(dim, dim_cond=dim_cond))), | |
) | |
decoder_layer = Sequential( | |
Residual(TokenShift(TimeAttention(**attn_kwargs))), | |
Residual(TokenShift(FeedForward(dim, dim_cond=dim_cond))), | |
) | |
elif layer_type == "cond_attend_space": | |
has_cond = True | |
attn_kwargs = dict( | |
dim=dim, | |
dim_cond=dim_cond, | |
dim_head=attn_dim_head, | |
heads=attn_heads, | |
dropout=attn_dropout, | |
flash=flash_attn, | |
) | |
encoder_layer = Sequential(Residual(SpaceAttention(**attn_kwargs)), Residual(FeedForward(dim))) | |
decoder_layer = Sequential(Residual(SpaceAttention(**attn_kwargs)), Residual(FeedForward(dim))) | |
elif layer_type == "cond_linear_attend_space": | |
has_cond = True | |
attn_kwargs = dict( | |
dim=dim, | |
dim_cond=dim_cond, | |
dim_head=attn_dim_head, | |
heads=attn_heads, | |
dropout=attn_dropout, | |
flash=flash_attn, | |
) | |
encoder_layer = Sequential( | |
Residual(LinearSpaceAttention(**attn_kwargs)), Residual(FeedForward(dim, dim_cond=dim_cond)) | |
) | |
decoder_layer = Sequential( | |
Residual(LinearSpaceAttention(**attn_kwargs)), Residual(FeedForward(dim, dim_cond=dim_cond)) | |
) | |
elif layer_type == "cond_attend_time": | |
has_cond = True | |
attn_kwargs = dict( | |
dim=dim, | |
dim_cond=dim_cond, | |
dim_head=attn_dim_head, | |
heads=attn_heads, | |
dropout=attn_dropout, | |
causal=True, | |
flash=flash_attn, | |
) | |
encoder_layer = Sequential( | |
Residual(TokenShift(TimeAttention(**attn_kwargs))), | |
Residual(TokenShift(FeedForward(dim, dim_cond=dim_cond))), | |
) | |
decoder_layer = Sequential( | |
Residual(TokenShift(TimeAttention(**attn_kwargs))), | |
Residual(TokenShift(FeedForward(dim, dim_cond=dim_cond))), | |
) | |
else: | |
raise ValueError(f"unknown layer type {layer_type}") | |
self.encoder_layers.append(encoder_layer) | |
self.decoder_layers.insert(0, decoder_layer) | |
dim = dim_out | |
has_cond_across_layers.append(has_cond) | |
# add a final norm just before quantization layer | |
self.encoder_layers.append( | |
Sequential( | |
Rearrange("b c ... -> b ... c"), | |
nn.LayerNorm(dim), | |
Rearrange("b ... c -> b c ..."), | |
) | |
) | |
self.time_downsample_factor = time_downsample_factor | |
self.time_padding = time_downsample_factor - 1 | |
self.fmap_size = layer_fmap_size | |
# use a MLP stem for conditioning, if needed | |
self.has_cond_across_layers = has_cond_across_layers | |
self.has_cond = any(has_cond_across_layers) | |
self.encoder_cond_in = nn.Identity() | |
self.decoder_cond_in = nn.Identity() | |
if has_cond: | |
self.dim_cond = dim_cond | |
self.encoder_cond_in = Sequential( | |
nn.Linear(dim_cond, int(dim_cond * dim_cond_expansion_factor)), nn.SiLU() | |
) | |
self.decoder_cond_in = Sequential( | |
nn.Linear(dim_cond, int(dim_cond * dim_cond_expansion_factor)), nn.SiLU() | |
) | |
# quantizer related | |
self.use_fsq = use_fsq | |
if not use_fsq: | |
assert exists(codebook_size) and not exists( | |
fsq_levels | |
), "if use_fsq is set to False, `codebook_size` must be set (and not `fsq_levels`)" | |
# lookup free quantizer(s) - multiple codebooks is possible | |
# each codebook will get its own entropy regularization | |
self.quantizers = LFQ( | |
dim=dim, | |
codebook_size=codebook_size, | |
num_codebooks=num_codebooks, | |
entropy_loss_weight=lfq_entropy_loss_weight, | |
commitment_loss_weight=lfq_commitment_loss_weight, | |
diversity_gamma=lfq_diversity_gamma, | |
) | |
else: | |
assert ( | |
not exists(codebook_size) and exists(fsq_levels) | |
), "if use_fsq is set to True, `fsq_levels` must be set (and not `codebook_size`). the effective codebook size is the cumulative product of all the FSQ levels" | |
self.quantizers = FSQ(fsq_levels, dim=dim, num_codebooks=num_codebooks) | |
self.quantizer_aux_loss_weight = quantizer_aux_loss_weight | |
# dummy loss | |
self.register_buffer("zero", torch.tensor(0.0), persistent=False) | |
# perceptual loss related | |
use_vgg = channels in {1, 3, 4} and perceptual_loss_weight > 0.0 | |
self.vgg = None | |
self.perceptual_loss_weight = perceptual_loss_weight | |
if use_vgg: | |
if not exists(vgg): | |
vgg = torchvision.models.vgg16(weights=vgg_weights) | |
vgg.classifier = Sequential(*vgg.classifier[:-2]) | |
self.vgg = vgg | |
self.use_vgg = use_vgg | |
# main flag for whether to use GAN at all | |
self.use_gan = use_gan | |
# discriminator | |
discr_kwargs = default(discr_kwargs, dict(dim=dim, image_size=image_size, channels=channels, max_dim=512)) | |
self.discr = Discriminator(**discr_kwargs) | |
self.adversarial_loss_weight = adversarial_loss_weight | |
self.grad_penalty_loss_weight = grad_penalty_loss_weight | |
self.has_gan = use_gan and adversarial_loss_weight > 0.0 | |
# multi-scale discriminators | |
self.has_multiscale_gan = use_gan and multiscale_adversarial_loss_weight > 0.0 | |
self.multiscale_discrs = ModuleList([*multiscale_discrs]) | |
self.multiscale_adversarial_loss_weight = multiscale_adversarial_loss_weight | |
self.has_multiscale_discrs = ( | |
use_gan and multiscale_adversarial_loss_weight > 0.0 and len(multiscale_discrs) > 0 | |
) | |
def device(self): | |
return self.zero.device | |
def init_and_load_from(cls, path, strict=True): | |
path = Path(path) | |
assert path.exists() | |
pkg = torch.load(str(path), map_location="cpu") | |
assert "config" in pkg, "model configs were not found in this saved checkpoint" | |
config = pickle.loads(pkg["config"]) | |
tokenizer = cls(**config) | |
tokenizer.load(path, strict=strict) | |
return tokenizer | |
def parameters(self): | |
return [ | |
*self.conv_in.parameters(), | |
*self.conv_in_first_frame.parameters(), | |
*self.conv_out_first_frame.parameters(), | |
*self.conv_out.parameters(), | |
*self.encoder_layers.parameters(), | |
*self.decoder_layers.parameters(), | |
*self.encoder_cond_in.parameters(), | |
*self.decoder_cond_in.parameters(), | |
*self.quantizers.parameters(), | |
] | |
def discr_parameters(self): | |
return self.discr.parameters() | |
def copy_for_eval(self): | |
device = self.device | |
vae_copy = copy.deepcopy(self.cpu()) | |
maybe_del_attr_(vae_copy, "discr") | |
maybe_del_attr_(vae_copy, "vgg") | |
maybe_del_attr_(vae_copy, "multiscale_discrs") | |
vae_copy.eval() | |
return vae_copy.to(device) | |
def state_dict(self, *args, **kwargs): | |
return super().state_dict(*args, **kwargs) | |
def load_state_dict(self, *args, **kwargs): | |
return super().load_state_dict(*args, **kwargs) | |
def save(self, path, overwrite=True): | |
path = Path(path) | |
assert overwrite or not path.exists(), f"{str(path)} already exists" | |
pkg = dict(model_state_dict=self.state_dict(), version=__version__, config=self._configs) | |
torch.save(pkg, str(path)) | |
def load(self, path, strict=True): | |
path = Path(path) | |
assert path.exists() | |
pkg = torch.load(str(path)) | |
state_dict = pkg.get("model_state_dict") | |
version = pkg.get("version") | |
assert exists(state_dict) | |
if exists(version): | |
print(f"loading checkpointed tokenizer from version {version}") | |
self.load_state_dict(state_dict, strict=strict) | |
def encode(self, video: Tensor, quantize=False, cond: Optional[Tensor] = None, video_contains_first_frame=True): | |
encode_first_frame_separately = self.separate_first_frame_encoding and video_contains_first_frame | |
# whether to pad video or not | |
if video_contains_first_frame: | |
video_len = video.shape[2] | |
video = pad_at_dim(video, (self.time_padding, 0), value=0.0, dim=2) | |
video_packed_shape = [torch.Size([self.time_padding]), torch.Size([]), torch.Size([video_len - 1])] | |
# conditioning, if needed | |
assert (not self.has_cond) or exists( | |
cond | |
), "`cond` must be passed into tokenizer forward method since conditionable layers were specified" | |
if exists(cond): | |
assert cond.shape == (video.shape[0], self.dim_cond) | |
cond = self.encoder_cond_in(cond) | |
cond_kwargs = dict(cond=cond) | |
# initial conv | |
# taking into account whether to encode first frame separately | |
if encode_first_frame_separately: | |
pad, first_frame, video = unpack(video, video_packed_shape, "b c * h w") | |
first_frame = self.conv_in_first_frame(first_frame) | |
video = self.conv_in(video) | |
if encode_first_frame_separately: | |
video, _ = pack([first_frame, video], "b c * h w") | |
video = pad_at_dim(video, (self.time_padding, 0), dim=2) | |
# encoder layers | |
for fn, has_cond in zip(self.encoder_layers, self.has_cond_across_layers): | |
layer_kwargs = dict() | |
if has_cond: | |
layer_kwargs = cond_kwargs | |
video = fn(video, **layer_kwargs) | |
maybe_quantize = identity if not quantize else self.quantizers | |
return maybe_quantize(video) | |
def decode_from_code_indices(self, codes: Tensor, cond: Optional[Tensor] = None, video_contains_first_frame=True): | |
assert codes.dtype in (torch.long, torch.int32) | |
if codes.ndim == 2: | |
video_code_len = codes.shape[-1] | |
assert divisible_by( | |
video_code_len, self.fmap_size**2 | |
), f"flattened video ids must have a length ({video_code_len}) that is divisible by the fmap size ({self.fmap_size}) squared ({self.fmap_size ** 2})" | |
codes = rearrange(codes, "b (f h w) -> b f h w", h=self.fmap_size, w=self.fmap_size) | |
quantized = self.quantizers.indices_to_codes(codes) | |
return self.decode(quantized, cond=cond, video_contains_first_frame=video_contains_first_frame) | |
def decode(self, quantized: Tensor, cond: Optional[Tensor] = None, video_contains_first_frame=True): | |
decode_first_frame_separately = self.separate_first_frame_encoding and video_contains_first_frame | |
batch = quantized.shape[0] | |
# conditioning, if needed | |
assert (not self.has_cond) or exists( | |
cond | |
), "`cond` must be passed into tokenizer forward method since conditionable layers were specified" | |
if exists(cond): | |
assert cond.shape == (batch, self.dim_cond) | |
cond = self.decoder_cond_in(cond) | |
cond_kwargs = dict(cond=cond) | |
# decoder layers | |
x = quantized | |
for fn, has_cond in zip(self.decoder_layers, reversed(self.has_cond_across_layers)): | |
layer_kwargs = dict() | |
if has_cond: | |
layer_kwargs = cond_kwargs | |
x = fn(x, **layer_kwargs) | |
# to pixels | |
if decode_first_frame_separately: | |
left_pad, xff, x = ( | |
x[:, :, : self.time_padding], | |
x[:, :, self.time_padding], | |
x[:, :, (self.time_padding + 1) :], | |
) | |
out = self.conv_out(x) | |
outff = self.conv_out_first_frame(xff) | |
video, _ = pack([outff, out], "b c * h w") | |
else: | |
video = self.conv_out(x) | |
# if video were padded, remove padding | |
if video_contains_first_frame: | |
video = video[:, :, self.time_padding :] | |
return video | |
def tokenize(self, video): | |
self.eval() | |
return self.forward(video, return_codes=True) | |
def forward( | |
self, | |
video_or_images: Tensor, | |
cond: Optional[Tensor] = None, | |
return_loss=False, | |
return_codes=False, | |
return_recon=False, | |
return_discr_loss=False, | |
return_recon_loss_only=False, | |
apply_gradient_penalty=True, | |
video_contains_first_frame=True, | |
adversarial_loss_weight=None, | |
multiscale_adversarial_loss_weight=None, | |
): | |
adversarial_loss_weight = default(adversarial_loss_weight, self.adversarial_loss_weight) | |
multiscale_adversarial_loss_weight = default( | |
multiscale_adversarial_loss_weight, self.multiscale_adversarial_loss_weight | |
) | |
assert (return_loss + return_codes + return_discr_loss) <= 1 | |
assert video_or_images.ndim in {4, 5} | |
assert video_or_images.shape[-2:] == (self.image_size, self.image_size) | |
# accept images for image pretraining (curriculum learning from images to video) | |
is_image = video_or_images.ndim == 4 | |
if is_image: | |
video = rearrange(video_or_images, "b c ... -> b c 1 ...") | |
video_contains_first_frame = True | |
else: | |
video = video_or_images | |
batch, channels, frames = video.shape[:3] | |
assert divisible_by( | |
frames - int(video_contains_first_frame), self.time_downsample_factor | |
), f"number of frames {frames} minus the first frame ({frames - int(video_contains_first_frame)}) must be divisible by the total downsample factor across time {self.time_downsample_factor}" | |
# encoder | |
x = self.encode(video, cond=cond, video_contains_first_frame=video_contains_first_frame) | |
# lookup free quantization | |
if self.use_fsq: | |
quantized, codes = self.quantizers(x) | |
aux_losses = self.zero | |
quantizer_loss_breakdown = None | |
else: | |
(quantized, codes, aux_losses), quantizer_loss_breakdown = self.quantizers(x, return_loss_breakdown=True) | |
if return_codes and not return_recon: | |
return codes | |
# decoder | |
recon_video = self.decode(quantized, cond=cond, video_contains_first_frame=video_contains_first_frame) | |
if return_codes: | |
return codes, recon_video | |
# reconstruction loss | |
if not (return_loss or return_discr_loss or return_recon_loss_only): | |
return recon_video | |
recon_loss = F.mse_loss(video, recon_video) | |
# for validation, only return recon loss | |
if return_recon_loss_only: | |
return recon_loss, recon_video | |
# gan discriminator loss | |
if return_discr_loss: | |
assert self.has_gan | |
assert exists(self.discr) | |
# pick a random frame for image discriminator | |
frame_indices = torch.randn((batch, frames)).topk(1, dim=-1).indices | |
real = pick_video_frame(video, frame_indices) | |
if apply_gradient_penalty: | |
real = real.requires_grad_() | |
fake = pick_video_frame(recon_video, frame_indices) | |
real_logits = self.discr(real) | |
fake_logits = self.discr(fake.detach()) | |
discr_loss = hinge_discr_loss(fake_logits, real_logits) | |
# multiscale discriminators | |
multiscale_discr_losses = [] | |
if self.has_multiscale_discrs: | |
for discr in self.multiscale_discrs: | |
multiscale_real_logits = discr(video) | |
multiscale_fake_logits = discr(recon_video.detach()) | |
multiscale_discr_loss = hinge_discr_loss(multiscale_fake_logits, multiscale_real_logits) | |
multiscale_discr_losses.append(multiscale_discr_loss) | |
else: | |
multiscale_discr_losses.append(self.zero) | |
# gradient penalty | |
if apply_gradient_penalty: | |
gradient_penalty_loss = gradient_penalty(real, real_logits) | |
else: | |
gradient_penalty_loss = self.zero | |
# total loss | |
total_loss = ( | |
discr_loss | |
+ gradient_penalty_loss * self.grad_penalty_loss_weight | |
+ sum(multiscale_discr_losses) * self.multiscale_adversarial_loss_weight | |
) | |
discr_loss_breakdown = DiscrLossBreakdown(discr_loss, multiscale_discr_losses, gradient_penalty_loss) | |
return total_loss, discr_loss_breakdown | |
# perceptual loss | |
if self.use_vgg: | |
frame_indices = torch.randn((batch, frames)).topk(1, dim=-1).indices | |
input_vgg_input = pick_video_frame(video, frame_indices) | |
recon_vgg_input = pick_video_frame(recon_video, frame_indices) | |
if channels == 1: | |
input_vgg_input = repeat(input_vgg_input, "b 1 h w -> b c h w", c=3) | |
recon_vgg_input = repeat(recon_vgg_input, "b 1 h w -> b c h w", c=3) | |
elif channels == 4: | |
input_vgg_input = input_vgg_input[:, :3] | |
recon_vgg_input = recon_vgg_input[:, :3] | |
input_vgg_feats = self.vgg(input_vgg_input) | |
recon_vgg_feats = self.vgg(recon_vgg_input) | |
perceptual_loss = F.mse_loss(input_vgg_feats, recon_vgg_feats) | |
else: | |
perceptual_loss = self.zero | |
# get gradient with respect to perceptual loss for last decoder layer | |
# needed for adaptive weighting | |
last_dec_layer = self.conv_out.conv.weight | |
norm_grad_wrt_perceptual_loss = None | |
if self.training and self.use_vgg and (self.has_gan or self.has_multiscale_discrs): | |
norm_grad_wrt_perceptual_loss = grad_layer_wrt_loss(perceptual_loss, last_dec_layer).norm(p=2) | |
# per-frame image discriminator | |
recon_video_frames = None | |
if self.has_gan: | |
frame_indices = torch.randn((batch, frames)).topk(1, dim=-1).indices | |
recon_video_frames = pick_video_frame(recon_video, frame_indices) | |
fake_logits = self.discr(recon_video_frames) | |
gen_loss = hinge_gen_loss(fake_logits) | |
adaptive_weight = 1.0 | |
if exists(norm_grad_wrt_perceptual_loss): | |
norm_grad_wrt_gen_loss = grad_layer_wrt_loss(gen_loss, last_dec_layer).norm(p=2) | |
adaptive_weight = norm_grad_wrt_perceptual_loss / norm_grad_wrt_gen_loss.clamp(min=1e-3) | |
adaptive_weight.clamp_(max=1e3) | |
if torch.isnan(adaptive_weight).any(): | |
adaptive_weight = 1.0 | |
else: | |
gen_loss = self.zero | |
adaptive_weight = 0.0 | |
# multiscale discriminator losses | |
multiscale_gen_losses = [] | |
multiscale_gen_adaptive_weights = [] | |
if self.has_multiscale_gan and self.has_multiscale_discrs: | |
if not exists(recon_video_frames): | |
recon_video_frames = pick_video_frame(recon_video, frame_indices) | |
for discr in self.multiscale_discrs: | |
fake_logits = recon_video_frames | |
multiscale_gen_loss = hinge_gen_loss(fake_logits) | |
multiscale_gen_losses.append(multiscale_gen_loss) | |
multiscale_adaptive_weight = 1.0 | |
if exists(norm_grad_wrt_perceptual_loss): | |
norm_grad_wrt_gen_loss = grad_layer_wrt_loss(multiscale_gen_loss, last_dec_layer).norm(p=2) | |
multiscale_adaptive_weight = norm_grad_wrt_perceptual_loss / norm_grad_wrt_gen_loss.clamp(min=1e-5) | |
multiscale_adaptive_weight.clamp_(max=1e3) | |
multiscale_gen_adaptive_weights.append(multiscale_adaptive_weight) | |
# calculate total loss | |
total_loss = ( | |
recon_loss | |
+ aux_losses * self.quantizer_aux_loss_weight | |
+ perceptual_loss * self.perceptual_loss_weight | |
+ gen_loss * adaptive_weight * adversarial_loss_weight | |
) | |
if self.has_multiscale_discrs: | |
weighted_multiscale_gen_losses = sum( | |
loss * weight for loss, weight in zip(multiscale_gen_losses, multiscale_gen_adaptive_weights) | |
) | |
total_loss = total_loss + weighted_multiscale_gen_losses * multiscale_adversarial_loss_weight | |
# loss breakdown | |
loss_breakdown = LossBreakdown( | |
recon_loss, | |
aux_losses, | |
quantizer_loss_breakdown, | |
perceptual_loss, | |
gen_loss, | |
adaptive_weight, | |
multiscale_gen_losses, | |
multiscale_gen_adaptive_weights, | |
) | |
return total_loss, loss_breakdown | |
# main class | |
class MagViT2(Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, x): | |
return x | |