File size: 9,839 Bytes
e276be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import math
from contextlib import nullcontext
from functools import partial
from typing import Dict, List, Optional, Tuple, Union

import kornia
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange, repeat
from omegaconf import ListConfig
from torch.utils.checkpoint import checkpoint
from transformers import (
    T5EncoderModel,
    T5Tokenizer,
)

from ...util import (
    append_dims,
    autocast,
    count_params,
    default,
    disabled_train,
    expand_dims_like,
    instantiate_from_config,
)


class AbstractEmbModel(nn.Module):
    def __init__(self):
        super().__init__()
        self._is_trainable = None
        self._ucg_rate = None
        self._input_key = None

    @property
    def is_trainable(self) -> bool:
        return self._is_trainable

    @property
    def ucg_rate(self) -> Union[float, torch.Tensor]:
        return self._ucg_rate

    @property
    def input_key(self) -> str:
        return self._input_key

    @is_trainable.setter
    def is_trainable(self, value: bool):
        self._is_trainable = value

    @ucg_rate.setter
    def ucg_rate(self, value: Union[float, torch.Tensor]):
        self._ucg_rate = value

    @input_key.setter
    def input_key(self, value: str):
        self._input_key = value

    @is_trainable.deleter
    def is_trainable(self):
        del self._is_trainable

    @ucg_rate.deleter
    def ucg_rate(self):
        del self._ucg_rate

    @input_key.deleter
    def input_key(self):
        del self._input_key


class GeneralConditioner(nn.Module):
    OUTPUT_DIM2KEYS = {2: "vector", 3: "crossattn", 4: "concat", 5: "concat"}
    KEY2CATDIM = {"vector": 1, "crossattn": 2, "concat": 1}

    def __init__(self, emb_models: Union[List, ListConfig], cor_embs=[], cor_p=[]):
        super().__init__()
        embedders = []
        for n, embconfig in enumerate(emb_models):
            embedder = instantiate_from_config(embconfig)
            assert isinstance(
                embedder, AbstractEmbModel
            ), f"embedder model {embedder.__class__.__name__} has to inherit from AbstractEmbModel"
            embedder.is_trainable = embconfig.get("is_trainable", False)
            embedder.ucg_rate = embconfig.get("ucg_rate", 0.0)
            if not embedder.is_trainable:
                embedder.train = disabled_train
                for param in embedder.parameters():
                    param.requires_grad = False
                embedder.eval()
            print(
                f"Initialized embedder #{n}: {embedder.__class__.__name__} "
                f"with {count_params(embedder, False)} params. Trainable: {embedder.is_trainable}"
            )

            if "input_key" in embconfig:
                embedder.input_key = embconfig["input_key"]
            elif "input_keys" in embconfig:
                embedder.input_keys = embconfig["input_keys"]
            else:
                raise KeyError(f"need either 'input_key' or 'input_keys' for embedder {embedder.__class__.__name__}")

            embedder.legacy_ucg_val = embconfig.get("legacy_ucg_value", None)
            if embedder.legacy_ucg_val is not None:
                embedder.ucg_prng = np.random.RandomState()

            embedders.append(embedder)
        self.embedders = nn.ModuleList(embedders)

        if len(cor_embs) > 0:
            assert len(cor_p) == 2 ** len(cor_embs)
        self.cor_embs = cor_embs
        self.cor_p = cor_p

    def possibly_get_ucg_val(self, embedder: AbstractEmbModel, batch: Dict) -> Dict:
        assert embedder.legacy_ucg_val is not None
        p = embedder.ucg_rate
        val = embedder.legacy_ucg_val
        for i in range(len(batch[embedder.input_key])):
            if embedder.ucg_prng.choice(2, p=[1 - p, p]):
                batch[embedder.input_key][i] = val
        return batch

    def surely_get_ucg_val(self, embedder: AbstractEmbModel, batch: Dict, cond_or_not) -> Dict:
        assert embedder.legacy_ucg_val is not None
        val = embedder.legacy_ucg_val
        for i in range(len(batch[embedder.input_key])):
            if cond_or_not[i]:
                batch[embedder.input_key][i] = val
        return batch

    def get_single_embedding(
        self,
        embedder,
        batch,
        output,
        cond_or_not: Optional[np.ndarray] = None,
        force_zero_embeddings: Optional[List] = None,
    ):
        embedding_context = nullcontext if embedder.is_trainable else torch.no_grad
        with embedding_context():
            if hasattr(embedder, "input_key") and (embedder.input_key is not None):
                if embedder.legacy_ucg_val is not None:
                    if cond_or_not is None:
                        batch = self.possibly_get_ucg_val(embedder, batch)
                    else:
                        batch = self.surely_get_ucg_val(embedder, batch, cond_or_not)
                emb_out = embedder(batch[embedder.input_key])
            elif hasattr(embedder, "input_keys"):
                emb_out = embedder(*[batch[k] for k in embedder.input_keys])
        assert isinstance(
            emb_out, (torch.Tensor, list, tuple)
        ), f"encoder outputs must be tensors or a sequence, but got {type(emb_out)}"
        if not isinstance(emb_out, (list, tuple)):
            emb_out = [emb_out]
        for emb in emb_out:
            out_key = self.OUTPUT_DIM2KEYS[emb.dim()]
            if embedder.ucg_rate > 0.0 and embedder.legacy_ucg_val is None:
                if cond_or_not is None:
                    emb = (
                        expand_dims_like(
                            torch.bernoulli((1.0 - embedder.ucg_rate) * torch.ones(emb.shape[0], device=emb.device)),
                            emb,
                        )
                        * emb
                    )
                else:
                    emb = (
                        expand_dims_like(
                            torch.tensor(1 - cond_or_not, dtype=emb.dtype, device=emb.device),
                            emb,
                        )
                        * emb
                    )
            if hasattr(embedder, "input_key") and embedder.input_key in force_zero_embeddings:
                emb = torch.zeros_like(emb)
            if out_key in output:
                output[out_key] = torch.cat((output[out_key], emb), self.KEY2CATDIM[out_key])
            else:
                output[out_key] = emb
        return output

    def forward(self, batch: Dict, force_zero_embeddings: Optional[List] = None) -> Dict:
        output = dict()
        if force_zero_embeddings is None:
            force_zero_embeddings = []

        if len(self.cor_embs) > 0:
            batch_size = len(batch[list(batch.keys())[0]])
            rand_idx = np.random.choice(len(self.cor_p), size=(batch_size,), p=self.cor_p)
            for emb_idx in self.cor_embs:
                cond_or_not = rand_idx % 2
                rand_idx //= 2
                output = self.get_single_embedding(
                    self.embedders[emb_idx],
                    batch,
                    output=output,
                    cond_or_not=cond_or_not,
                    force_zero_embeddings=force_zero_embeddings,
                )

        for i, embedder in enumerate(self.embedders):
            if i in self.cor_embs:
                continue
            output = self.get_single_embedding(
                embedder, batch, output=output, force_zero_embeddings=force_zero_embeddings
            )
        return output

    def get_unconditional_conditioning(self, batch_c, batch_uc=None, force_uc_zero_embeddings=None):
        if force_uc_zero_embeddings is None:
            force_uc_zero_embeddings = []
        ucg_rates = list()
        for embedder in self.embedders:
            ucg_rates.append(embedder.ucg_rate)
            embedder.ucg_rate = 0.0
        cor_embs = self.cor_embs
        cor_p = self.cor_p
        self.cor_embs = []
        self.cor_p = []

        c = self(batch_c)
        uc = self(batch_c if batch_uc is None else batch_uc, force_uc_zero_embeddings)

        for embedder, rate in zip(self.embedders, ucg_rates):
            embedder.ucg_rate = rate
        self.cor_embs = cor_embs
        self.cor_p = cor_p

        return c, uc


class FrozenT5Embedder(AbstractEmbModel):
    """Uses the T5 transformer encoder for text"""

    def __init__(
        self,
        model_dir="google/t5-v1_1-xxl",
        device="cuda",
        max_length=77,
        freeze=True,
        cache_dir=None,
    ):
        super().__init__()
        if model_dir is not "google/t5-v1_1-xxl":
            self.tokenizer = T5Tokenizer.from_pretrained(model_dir)
            self.transformer = T5EncoderModel.from_pretrained(model_dir)
        else:
            self.tokenizer = T5Tokenizer.from_pretrained(model_dir, cache_dir=cache_dir)
            self.transformer = T5EncoderModel.from_pretrained(model_dir, cache_dir=cache_dir)
        self.device = device
        self.max_length = max_length
        if freeze:
            self.freeze()

    def freeze(self):
        self.transformer = self.transformer.eval()

        for param in self.parameters():
            param.requires_grad = False

    # @autocast
    def forward(self, text):
        batch_encoding = self.tokenizer(
            text,
            truncation=True,
            max_length=self.max_length,
            return_length=True,
            return_overflowing_tokens=False,
            padding="max_length",
            return_tensors="pt",
        )
        tokens = batch_encoding["input_ids"].to(self.device)
        with torch.autocast("cuda", enabled=False):
            outputs = self.transformer(input_ids=tokens)
        z = outputs.last_hidden_state
        return z

    def encode(self, text):
        return self(text)