Spaces:
Runtime error
Runtime error
File size: 24,068 Bytes
e276be2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
from typing import Any, Union
from math import log2
from beartype import beartype
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.autograd import grad as torch_grad
from torch.cuda.amp import autocast
import torchvision
from torchvision.models import VGG16_Weights
from einops import rearrange, einsum, repeat
from einops.layers.torch import Rearrange
from kornia.filters import filter3d
from ..magvit2_pytorch import Residual, FeedForward, LinearSpaceAttention
from .lpips import LPIPS
from sgm.modules.autoencoding.vqvae.movq_enc_3d import CausalConv3d, DownSample3D
from sgm.util import instantiate_from_config
def exists(v):
return v is not None
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def leaky_relu(p=0.1):
return nn.LeakyReLU(p)
def hinge_discr_loss(fake, real):
return (F.relu(1 + fake) + F.relu(1 - real)).mean()
def hinge_gen_loss(fake):
return -fake.mean()
@autocast(enabled=False)
@beartype
def grad_layer_wrt_loss(loss: Tensor, layer: nn.Parameter):
return torch_grad(outputs=loss, inputs=layer, grad_outputs=torch.ones_like(loss), retain_graph=True)[0].detach()
def pick_video_frame(video, frame_indices):
batch, device = video.shape[0], video.device
video = rearrange(video, "b c f ... -> b f c ...")
batch_indices = torch.arange(batch, device=device)
batch_indices = rearrange(batch_indices, "b -> b 1")
images = video[batch_indices, frame_indices]
images = rearrange(images, "b 1 c ... -> b c ...")
return images
def gradient_penalty(images, output):
batch_size = images.shape[0]
gradients = torch_grad(
outputs=output,
inputs=images,
grad_outputs=torch.ones(output.size(), device=images.device),
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
gradients = rearrange(gradients, "b ... -> b (...)")
return ((gradients.norm(2, dim=1) - 1) ** 2).mean()
# discriminator with anti-aliased downsampling (blurpool Zhang et al.)
class Blur(nn.Module):
def __init__(self):
super().__init__()
f = torch.Tensor([1, 2, 1])
self.register_buffer("f", f)
def forward(self, x, space_only=False, time_only=False):
assert not (space_only and time_only)
f = self.f
if space_only:
f = einsum("i, j -> i j", f, f)
f = rearrange(f, "... -> 1 1 ...")
elif time_only:
f = rearrange(f, "f -> 1 f 1 1")
else:
f = einsum("i, j, k -> i j k", f, f, f)
f = rearrange(f, "... -> 1 ...")
is_images = x.ndim == 4
if is_images:
x = rearrange(x, "b c h w -> b c 1 h w")
out = filter3d(x, f, normalized=True)
if is_images:
out = rearrange(out, "b c 1 h w -> b c h w")
return out
class DiscriminatorBlock(nn.Module):
def __init__(self, input_channels, filters, downsample=True, antialiased_downsample=True):
super().__init__()
self.conv_res = nn.Conv2d(input_channels, filters, 1, stride=(2 if downsample else 1))
self.net = nn.Sequential(
nn.Conv2d(input_channels, filters, 3, padding=1),
leaky_relu(),
nn.Conv2d(filters, filters, 3, padding=1),
leaky_relu(),
)
self.maybe_blur = Blur() if antialiased_downsample else None
self.downsample = (
nn.Sequential(
Rearrange("b c (h p1) (w p2) -> b (c p1 p2) h w", p1=2, p2=2), nn.Conv2d(filters * 4, filters, 1)
)
if downsample
else None
)
def forward(self, x):
res = self.conv_res(x)
x = self.net(x)
if exists(self.downsample):
if exists(self.maybe_blur):
x = self.maybe_blur(x, space_only=True)
x = self.downsample(x)
x = (x + res) * (2**-0.5)
return x
class Discriminator(nn.Module):
@beartype
def __init__(
self,
*,
dim,
image_size,
channels=3,
max_dim=512,
attn_heads=8,
attn_dim_head=32,
linear_attn_dim_head=8,
linear_attn_heads=16,
ff_mult=4,
antialiased_downsample=False,
):
super().__init__()
image_size = pair(image_size)
min_image_resolution = min(image_size)
num_layers = int(log2(min_image_resolution) - 2)
blocks = []
layer_dims = [channels] + [(dim * 4) * (2**i) for i in range(num_layers + 1)]
layer_dims = [min(layer_dim, max_dim) for layer_dim in layer_dims]
layer_dims_in_out = tuple(zip(layer_dims[:-1], layer_dims[1:]))
blocks = []
attn_blocks = []
image_resolution = min_image_resolution
for ind, (in_chan, out_chan) in enumerate(layer_dims_in_out):
num_layer = ind + 1
is_not_last = ind != (len(layer_dims_in_out) - 1)
block = DiscriminatorBlock(
in_chan, out_chan, downsample=is_not_last, antialiased_downsample=antialiased_downsample
)
attn_block = nn.Sequential(
Residual(LinearSpaceAttention(dim=out_chan, heads=linear_attn_heads, dim_head=linear_attn_dim_head)),
Residual(FeedForward(dim=out_chan, mult=ff_mult, images=True)),
)
blocks.append(nn.ModuleList([block, attn_block]))
image_resolution //= 2
self.blocks = nn.ModuleList(blocks)
dim_last = layer_dims[-1]
downsample_factor = 2**num_layers
last_fmap_size = tuple(map(lambda n: n // downsample_factor, image_size))
latent_dim = last_fmap_size[0] * last_fmap_size[1] * dim_last
self.to_logits = nn.Sequential(
nn.Conv2d(dim_last, dim_last, 3, padding=1),
leaky_relu(),
Rearrange("b ... -> b (...)"),
nn.Linear(latent_dim, 1),
Rearrange("b 1 -> b"),
)
def forward(self, x):
for block, attn_block in self.blocks:
x = block(x)
x = attn_block(x)
return self.to_logits(x)
class DiscriminatorBlock3D(nn.Module):
def __init__(
self,
input_channels,
filters,
antialiased_downsample=True,
):
super().__init__()
self.conv_res = nn.Conv3d(input_channels, filters, 1, stride=2)
self.net = nn.Sequential(
nn.Conv3d(input_channels, filters, 3, padding=1),
leaky_relu(),
nn.Conv3d(filters, filters, 3, padding=1),
leaky_relu(),
)
self.maybe_blur = Blur() if antialiased_downsample else None
self.downsample = nn.Sequential(
Rearrange("b c (f p1) (h p2) (w p3) -> b (c p1 p2 p3) f h w", p1=2, p2=2, p3=2),
nn.Conv3d(filters * 8, filters, 1),
)
def forward(self, x):
res = self.conv_res(x)
x = self.net(x)
if exists(self.downsample):
if exists(self.maybe_blur):
x = self.maybe_blur(x, space_only=True)
x = self.downsample(x)
x = (x + res) * (2**-0.5)
return x
class DiscriminatorBlock3DWithfirstframe(nn.Module):
def __init__(
self,
input_channels,
filters,
antialiased_downsample=True,
pad_mode="first",
):
super().__init__()
self.downsample_res = DownSample3D(
in_channels=input_channels,
out_channels=filters,
with_conv=True,
compress_time=True,
)
self.net = nn.Sequential(
CausalConv3d(input_channels, filters, kernel_size=3, pad_mode=pad_mode),
leaky_relu(),
CausalConv3d(filters, filters, kernel_size=3, pad_mode=pad_mode),
leaky_relu(),
)
self.maybe_blur = Blur() if antialiased_downsample else None
self.downsample = DownSample3D(
in_channels=filters,
out_channels=filters,
with_conv=True,
compress_time=True,
)
def forward(self, x):
res = self.downsample_res(x)
x = self.net(x)
if exists(self.downsample):
if exists(self.maybe_blur):
x = self.maybe_blur(x, space_only=True)
x = self.downsample(x)
x = (x + res) * (2**-0.5)
return x
class Discriminator3D(nn.Module):
@beartype
def __init__(
self,
*,
dim,
image_size,
frame_num,
channels=3,
max_dim=512,
linear_attn_dim_head=8,
linear_attn_heads=16,
ff_mult=4,
antialiased_downsample=False,
):
super().__init__()
image_size = pair(image_size)
min_image_resolution = min(image_size)
num_layers = int(log2(min_image_resolution) - 2)
temporal_num_layers = int(log2(frame_num))
self.temporal_num_layers = temporal_num_layers
layer_dims = [channels] + [(dim * 4) * (2**i) for i in range(num_layers + 1)]
layer_dims = [min(layer_dim, max_dim) for layer_dim in layer_dims]
layer_dims_in_out = tuple(zip(layer_dims[:-1], layer_dims[1:]))
blocks = []
image_resolution = min_image_resolution
frame_resolution = frame_num
for ind, (in_chan, out_chan) in enumerate(layer_dims_in_out):
num_layer = ind + 1
is_not_last = ind != (len(layer_dims_in_out) - 1)
if ind < temporal_num_layers:
block = DiscriminatorBlock3D(
in_chan,
out_chan,
antialiased_downsample=antialiased_downsample,
)
blocks.append(block)
frame_resolution //= 2
else:
block = DiscriminatorBlock(
in_chan,
out_chan,
downsample=is_not_last,
antialiased_downsample=antialiased_downsample,
)
attn_block = nn.Sequential(
Residual(
LinearSpaceAttention(dim=out_chan, heads=linear_attn_heads, dim_head=linear_attn_dim_head)
),
Residual(FeedForward(dim=out_chan, mult=ff_mult, images=True)),
)
blocks.append(nn.ModuleList([block, attn_block]))
image_resolution //= 2
self.blocks = nn.ModuleList(blocks)
dim_last = layer_dims[-1]
downsample_factor = 2**num_layers
last_fmap_size = tuple(map(lambda n: n // downsample_factor, image_size))
latent_dim = last_fmap_size[0] * last_fmap_size[1] * dim_last
self.to_logits = nn.Sequential(
nn.Conv2d(dim_last, dim_last, 3, padding=1),
leaky_relu(),
Rearrange("b ... -> b (...)"),
nn.Linear(latent_dim, 1),
Rearrange("b 1 -> b"),
)
def forward(self, x):
for i, layer in enumerate(self.blocks):
if i < self.temporal_num_layers:
x = layer(x)
if i == self.temporal_num_layers - 1:
x = rearrange(x, "b c f h w -> (b f) c h w")
else:
block, attn_block = layer
x = block(x)
x = attn_block(x)
return self.to_logits(x)
class Discriminator3DWithfirstframe(nn.Module):
@beartype
def __init__(
self,
*,
dim,
image_size,
frame_num,
channels=3,
max_dim=512,
linear_attn_dim_head=8,
linear_attn_heads=16,
ff_mult=4,
antialiased_downsample=False,
):
super().__init__()
image_size = pair(image_size)
min_image_resolution = min(image_size)
num_layers = int(log2(min_image_resolution) - 2)
temporal_num_layers = int(log2(frame_num))
self.temporal_num_layers = temporal_num_layers
layer_dims = [channels] + [(dim * 4) * (2**i) for i in range(num_layers + 1)]
layer_dims = [min(layer_dim, max_dim) for layer_dim in layer_dims]
layer_dims_in_out = tuple(zip(layer_dims[:-1], layer_dims[1:]))
blocks = []
image_resolution = min_image_resolution
frame_resolution = frame_num
for ind, (in_chan, out_chan) in enumerate(layer_dims_in_out):
num_layer = ind + 1
is_not_last = ind != (len(layer_dims_in_out) - 1)
if ind < temporal_num_layers:
block = DiscriminatorBlock3DWithfirstframe(
in_chan,
out_chan,
antialiased_downsample=antialiased_downsample,
)
blocks.append(block)
frame_resolution //= 2
else:
block = DiscriminatorBlock(
in_chan,
out_chan,
downsample=is_not_last,
antialiased_downsample=antialiased_downsample,
)
attn_block = nn.Sequential(
Residual(
LinearSpaceAttention(dim=out_chan, heads=linear_attn_heads, dim_head=linear_attn_dim_head)
),
Residual(FeedForward(dim=out_chan, mult=ff_mult, images=True)),
)
blocks.append(nn.ModuleList([block, attn_block]))
image_resolution //= 2
self.blocks = nn.ModuleList(blocks)
dim_last = layer_dims[-1]
downsample_factor = 2**num_layers
last_fmap_size = tuple(map(lambda n: n // downsample_factor, image_size))
latent_dim = last_fmap_size[0] * last_fmap_size[1] * dim_last
self.to_logits = nn.Sequential(
nn.Conv2d(dim_last, dim_last, 3, padding=1),
leaky_relu(),
Rearrange("b ... -> b (...)"),
nn.Linear(latent_dim, 1),
Rearrange("b 1 -> b"),
)
def forward(self, x):
for i, layer in enumerate(self.blocks):
if i < self.temporal_num_layers:
x = layer(x)
if i == self.temporal_num_layers - 1:
x = x.mean(dim=2)
# x = rearrange(x, "b c f h w -> (b f) c h w")
else:
block, attn_block = layer
x = block(x)
x = attn_block(x)
return self.to_logits(x)
class VideoAutoencoderLoss(nn.Module):
def __init__(
self,
disc_start,
perceptual_weight=1,
adversarial_loss_weight=0,
multiscale_adversarial_loss_weight=0,
grad_penalty_loss_weight=0,
quantizer_aux_loss_weight=0,
vgg_weights=VGG16_Weights.DEFAULT,
discr_kwargs=None,
discr_3d_kwargs=None,
):
super().__init__()
self.disc_start = disc_start
self.perceptual_weight = perceptual_weight
self.adversarial_loss_weight = adversarial_loss_weight
self.multiscale_adversarial_loss_weight = multiscale_adversarial_loss_weight
self.grad_penalty_loss_weight = grad_penalty_loss_weight
self.quantizer_aux_loss_weight = quantizer_aux_loss_weight
if self.perceptual_weight > 0:
self.perceptual_model = LPIPS().eval()
# self.vgg = torchvision.models.vgg16(pretrained = True)
# self.vgg.requires_grad_(False)
# if self.adversarial_loss_weight > 0:
# self.discr = Discriminator(**discr_kwargs)
# else:
# self.discr = None
# if self.multiscale_adversarial_loss_weight > 0:
# self.multiscale_discrs = nn.ModuleList([*multiscale_discrs])
# else:
# self.multiscale_discrs = None
if discr_kwargs is not None:
self.discr = Discriminator(**discr_kwargs)
else:
self.discr = None
if discr_3d_kwargs is not None:
# self.discr_3d = Discriminator3D(**discr_3d_kwargs)
self.discr_3d = instantiate_from_config(discr_3d_kwargs)
else:
self.discr_3d = None
# self.multiscale_discrs = nn.ModuleList([*multiscale_discrs])
self.register_buffer("zero", torch.tensor(0.0), persistent=False)
def get_trainable_params(self) -> Any:
params = []
if self.discr is not None:
params += list(self.discr.parameters())
if self.discr_3d is not None:
params += list(self.discr_3d.parameters())
# if self.multiscale_discrs is not None:
# for discr in self.multiscale_discrs:
# params += list(discr.parameters())
return params
def get_trainable_parameters(self) -> Any:
return self.get_trainable_params()
def forward(
self,
inputs,
reconstructions,
optimizer_idx,
global_step,
aux_losses=None,
last_layer=None,
split="train",
):
batch, channels, frames = inputs.shape[:3]
if optimizer_idx == 0:
recon_loss = F.mse_loss(inputs, reconstructions)
if self.perceptual_weight > 0:
frame_indices = torch.randn((batch, frames)).topk(1, dim=-1).indices
input_frames = pick_video_frame(inputs, frame_indices)
recon_frames = pick_video_frame(reconstructions, frame_indices)
perceptual_loss = self.perceptual_model(input_frames.contiguous(), recon_frames.contiguous()).mean()
else:
perceptual_loss = self.zero
if global_step >= self.disc_start or not self.training or self.adversarial_loss_weight == 0:
gen_loss = self.zero
adaptive_weight = 0
else:
# frame_indices = torch.randn((batch, frames)).topk(1, dim = -1).indices
# recon_video_frames = pick_video_frame(reconstructions, frame_indices)
# fake_logits = self.discr(recon_video_frames)
fake_logits = self.discr_3d(reconstructions)
gen_loss = hinge_gen_loss(fake_logits)
adaptive_weight = 1
if self.perceptual_weight > 0 and last_layer is not None:
norm_grad_wrt_perceptual_loss = grad_layer_wrt_loss(perceptual_loss, last_layer).norm(p=2)
norm_grad_wrt_gen_loss = grad_layer_wrt_loss(gen_loss, last_layer).norm(p=2)
adaptive_weight = norm_grad_wrt_perceptual_loss / norm_grad_wrt_gen_loss.clamp(min=1e-3)
adaptive_weight.clamp_(max=1e3)
if torch.isnan(adaptive_weight).any():
adaptive_weight = 1
# multiscale discriminator losses
# multiscale_gen_losses = []
# multiscale_gen_adaptive_weights = []
# if self.multiscale_adversarial_loss_weight > 0:
# if not exists(recon_video_frames):
# frame_indices = torch.randn((batch, frames)).topk(1, dim = -1).indices
# recon_video_frames = pick_video_frame(reconstructions, frame_indices)
# for discr in self.multiscale_discrs:
# fake_logits = recon_video_frames
# multiscale_gen_loss = hinge_gen_loss(fake_logits)
# multiscale_gen_losses.append(multiscale_gen_loss)
# multiscale_adaptive_weight = 1.
# if exists(norm_grad_wrt_perceptual_loss):
# norm_grad_wrt_gen_loss = grad_layer_wrt_loss(multiscale_gen_loss, last_layer).norm(p = 2)
# multiscale_adaptive_weight = norm_grad_wrt_perceptual_loss / norm_grad_wrt_gen_loss.clamp(min = 1e-5)
# multiscale_adaptive_weight.clamp_(max = 1e3)
# multiscale_gen_adaptive_weights.append(multiscale_adaptive_weight)
# weighted_multiscale_gen_losses = sum(loss * weight for loss, weight in zip(multiscale_gen_losses, multiscale_gen_adaptive_weights))
# else:
# weighted_multiscale_gen_losses = self.zero
if aux_losses is None:
aux_losses = self.zero
total_loss = (
recon_loss
+ aux_losses * self.quantizer_aux_loss_weight
+ perceptual_loss * self.perceptual_weight
+ gen_loss * self.adversarial_loss_weight
)
# gen_loss * adaptive_weight * self.adversarial_loss_weight + \
# weighted_multiscale_gen_losses * self.multiscale_adversarial_loss_weight
log = {
"{}/total_loss".format(split): total_loss.detach(),
"{}/recon_loss".format(split): recon_loss.detach(),
"{}/perceptual_loss".format(split): perceptual_loss.detach(),
"{}/gen_loss".format(split): gen_loss.detach(),
"{}/aux_losses".format(split): aux_losses.detach(),
# "{}/weighted_multiscale_gen_losses".format(split): weighted_multiscale_gen_losses.detach(),
"{}/adaptive_weight".format(split): adaptive_weight,
# "{}/multiscale_adaptive_weights".format(split): sum(multiscale_gen_adaptive_weights),
}
return total_loss, log
if optimizer_idx == 1:
# frame_indices = torch.randn((batch, frames)).topk(1, dim = -1).indices
# real = pick_video_frame(inputs, frame_indices)
# fake = pick_video_frame(reconstructions, frame_indices)
# apply_gradient_penalty = self.grad_penalty_loss_weight > 0
# if apply_gradient_penalty:
# real = real.requires_grad_()
# real_logits = self.discr(real)
# fake_logits = self.discr(fake.detach())
apply_gradient_penalty = self.grad_penalty_loss_weight > 0
if apply_gradient_penalty:
inputs = inputs.requires_grad_()
real_logits = self.discr_3d(inputs)
fake_logits = self.discr_3d(reconstructions.detach())
discr_loss = hinge_discr_loss(fake_logits, real_logits)
# # multiscale discriminators
# multiscale_discr_losses = []
# if self.multiscale_adversarial_loss_weight > 0:
# for discr in self.multiscale_discrs:
# multiscale_real_logits = discr(inputs)
# multiscale_fake_logits = discr(reconstructions.detach())
# multiscale_discr_loss = hinge_discr_loss(multiscale_fake_logits, multiscale_real_logits)
# multiscale_discr_losses.append(multiscale_discr_loss)
# else:
# multiscale_discr_losses.append(self.zero)
# gradient penalty
if apply_gradient_penalty:
# gradient_penalty_loss = gradient_penalty(real, real_logits)
gradient_penalty_loss = gradient_penalty(inputs, real_logits)
else:
gradient_penalty_loss = self.zero
total_loss = discr_loss + self.grad_penalty_loss_weight * gradient_penalty_loss
# self.grad_penalty_loss_weight * gradient_penalty_loss + \
# sum(multiscale_discr_losses) * self.multiscale_adversarial_loss_weight
log = {
"{}/total_disc_loss".format(split): total_loss.detach(),
"{}/discr_loss".format(split): discr_loss.detach(),
"{}/grad_penalty_loss".format(split): gradient_penalty_loss.detach(),
# "{}/multiscale_discr_loss".format(split): sum(multiscale_discr_losses).detach(),
"{}/logits_real".format(split): real_logits.detach().mean(),
"{}/logits_fake".format(split): fake_logits.detach().mean(),
}
return total_loss, log
|