import gradio as gr from transformers import T5ForConditionalGeneration, AutoTokenizer, TrainingArguments tokenizer = AutoTokenizer.from_pretrained('evanthebouncy/cad-llm') model = T5ForConditionalGeneration.from_pretrained('evanthebouncy/cad-llm') temp = 1.0 def generate_samples_with_temp(txt_n): txt, n = txt_n.split('|') n_samples = int(n) to_tokenizer = [txt for i in range(n_samples)] outputs = model.generate(tokenizer(to_tokenizer, return_tensors='pt', padding=True).input_ids, do_sample=True, max_length=128, temperature = temp) results = tokenizer.batch_decode(outputs, skip_special_tokens=True) return '\n'.join(results) iface = gr.Interface(fn=generate_samples_with_temp, inputs="text", outputs="text") iface.launch()