Spaces:
Sleeping
Sleeping
File size: 7,546 Bytes
279cc21 eaa0408 279cc21 a76893e 279cc21 eaa0408 279cc21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from tensorflow import keras
from keras.models import Sequential
from keras.models import load_model
from keras.models import model_from_json
from keras.utils import img_to_array
import keras.utils as image
import cv2
import numpy as np
import os
from django_app.settings import BASE_DIR
model = Sequential()
model = model_from_json(open(
os.path.join(BASE_DIR,'model/model_4layer_2_2_pool.json'), "r").read())
model.load_weights(os.path.join(
BASE_DIR,'model/model_4layer_2_2_pool.h5'))
class_labels = {0: 'Angry', 1: 'Disgust', 2: 'Fear',
3: 'Happy', 4: 'Sad', 5: 'Surprise', 6: 'Neutral'}
classes = list(class_labels.values())
face_classifier = cv2.CascadeClassifier(os.path.join(
BASE_DIR,'model/haarcascade_frontalface.xml'))
# camera = cv2.VideoCapture(0)
def text_on_detected_boxes(text, text_x, text_y, image, font_scale=1,
font=cv2.FONT_HERSHEY_SIMPLEX,
FONT_COLOR=(0, 0, 0),
FONT_THICKNESS=2,
rectangle_bgr=(0, 255, 0)):
(text_width, text_height) = cv2.getTextSize(
text, font, fontScale=font_scale, thickness=2)[0]
box_coords = ((text_x-10, text_y+4), (text_x +
text_width+10, text_y - text_height-5))
cv2.rectangle(image, box_coords[0],
box_coords[1], rectangle_bgr, cv2.FILLED)
cv2.putText(image, text, (text_x, text_y), font,
fontScale=font_scale, color=FONT_COLOR, thickness=FONT_THICKNESS)
def face_detector_image(img):
"""
Обнаружение лиц на изображении.
Args:
img (numpy array): Исходное изображение.
Returns:
tuple: (rects, allfaces, img) - координаты лиц, обрезанные лица и изображение с рамками.
"""
gray = cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(gray, 1.3, 5)
if faces == ():
return (0, 0, 0, 0), np.zeros((48, 48), np.uint8), img
allfaces = []
rects = []
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
roi_gray = gray[y:y + h, x:x + w]
roi_gray = cv2.resize(roi_gray, (48, 48), interpolation=cv2.INTER_AREA)
allfaces.append(roi_gray)
rects.append((x, w, y, h))
return rects, allfaces, img
def emotionImage(imgPath):
img = cv2.imread(BASE_DIR + '/media/' + imgPath)
rects, faces, image = face_detector_image(img)
i = 0
for face in faces:
roi = face.astype("float") / 255.0
roi = img_to_array(roi)
roi = np.expand_dims(roi, axis=0)
preds = model.predict(roi)[0]
label = class_labels[preds.argmax()]
label_position = (
rects[i][0] + int((rects[i][1] / 2)), abs(rects[i][2] - 10))
i += 1
# Отрисовка текста и рамок
text_on_detected_boxes(
label, label_position[0], label_position[1], image)
precentages = dict(zip(classes, preds*100))
return image, precentages, label
def emotionImageFromArray(img_array):
"""
Обрабатывает изображение и возвращает результат обработки.
Args:
img_array (numpy array): Исходное изображение (numpy array).
Returns:
tuple: (image, precentages, label)
- image: Изображение с рамками и текстом эмоций.
- precentages: Вероятности каждой эмоции.
- label: Определенная эмоция.
"""
rects, faces, image = face_detector_image(img_array)
i = 0
for face in faces:
roi = face.astype("float") / 255.0
roi = img_to_array(roi)
roi = np.expand_dims(roi, axis=0)
preds = model.predict(roi)[0]
label = class_labels[preds.argmax()]
label_position = (
rects[i][0] + int((rects[i][1] / 2)), abs(rects[i][2] - 10))
i += 1
# Отрисовка текста и рамок
text_on_detected_boxes(
label, label_position[0], label_position[1], image)
precentages = dict(zip(classes, preds*100))
return image, precentages, label
# def face_detector_video(img):
# gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# faces = face_classifier.detectMultiScale(gray, 1.3, 5)
# if faces is ():
# return (0, 0, 0, 0), np.zeros((48, 48), np.uint8), img
# for (x, y, w, h) in faces:
# cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), thickness=2)
# roi_gray = gray[y:y + h, x:x + w]
# roi_gray = cv2.resize(roi_gray, (48, 48), interpolation=cv2.INTER_AREA)
# return (x, w, y, h), roi_gray, img
# def emotionVideo():
# while True:
# ret, frame = camera.read()
# rect, face, image = face_detector_video(frame)
# if np.sum([face]) != 0.0:
# roi = face.astype("float") / 255.0
# roi = img_to_array(roi)
# roi = np.expand_dims(roi, axis=0)
# preds = model.predict(roi)[0]
# label = class_labels[preds.argmax()]
# label_position = (rect[0] + rect[1]//50, rect[2] + rect[3]//50)
# text_on_detected_boxes(label, label_position[0], label_position[1], image)
# fps = camera.get(cv2.CAP_PROP_FPS)
# cv2.putText(image, str(fps),(5, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# else:
# cv2.putText(image, "No Face Found", (5, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
# ret, buffer = cv2.imencode('.jpg', image)
# frame = buffer.tobytes()
# yield (b'--frame\r\n'
# b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
# def gen_frames():
# while True:
# success, frame = camera.read()
# if not success:
# cv2.putText(image, "No Face Found", (5, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
# break
# else:
# gray_img= cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# faces_detected = face_classifier.detectMultiScale(gray_img, 1.32, 5)
# for (x,y,w,h) in faces_detected:
# cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),thickness=7)
# roi_gray=gray_img[y:y+w,x:x+h]
# roi_gray=cv2.resize(roi_gray,(48,48))
# img_pixels = image.img_to_array(roi_gray)
# img_pixels = np.expand_dims(img_pixels, axis = 0)
# img_pixels /= 255
# predictions = model.predict(img_pixels)
# max_index = np.argmax(predictions[0])
# emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
# predicted_emotion = emotions[max_index]
# cv2.putText(frame, predicted_emotion, (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2)
# resized_img = cv2.resize(frame, (600, 400))
# ret, buffer = cv2.imencode('.jpg', frame)
# frame = buffer.tobytes()
# yield (b'--frame\r\n'
# b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') |