Spaces:
Runtime error
Runtime error
File size: 16,837 Bytes
dda1539 8b0fc91 dda1539 2645fa8 dda1539 8b0fc91 dda1539 8b0fc91 dda1539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# Implementation loosely based on https://github.com/tensorflow/tensor2tensor/blob/bafdc1b67730430d38d6ab802cbd51f9d053ba2e/tensor2tensor/utils/beam_search.py#L554
import requests
import time
from datetime import datetime, timedelta
from typing import Optional, Literal
import torch
import torch.nn as nn
from transformers import LlamaTokenizer
from superposed.llama.utils import *
from superposed.ngrams.ngram_models import NGram
INF = 1. * 1e7
# Test by scaling # beams & verify work
class Superpose(nn.Module):
def __init__(self,
initial_tokens,
tokenizer,
vocab_size,
smoothing=Optional[Literal["geom", "all"]],
alpha = None,
verbose = False,
i_weights = None,
i_length = None,
ngrams = None,
sample_beams = False,
sample_tokens = False,
get_time = False,
penalty = 200): # default no effect
"""
Initialize a beam search class.
Args:
initial_tokens (torch.Tensor): Initial tokens
n_prompts (int): Number of prompts
tokenizer (Tokenizer): Llama tokenizer
vocab_size (int): Total vocab size
smoothing (str): Smoothing method ("geom" for default, "all" for only ngram, None for no ngram)
ngram_length (int): N gram length to consider
alpha (float): Alpha parameter
debug (bool): Whether to print information
"""
super().__init__()
# primary parameters
self.n_prompts, self.n_drafts, _ = initial_tokens.shape
self.tokenizer = tokenizer
self.vocab_size = vocab_size
self.alive_seq = initial_tokens
self.fin_seq = initial_tokens
self.smoothing = smoothing
self.alive_log_probs = torch.zeros(self.n_prompts, self.n_drafts, device="cuda")
self.fin_log_probs = torch.full((self.n_prompts, self.n_drafts), float("-inf"), device="cuda")
self.alpha = alpha
self.verbose = verbose
self.penalty = penalty
# devices
self.cpu = torch.device('cpu')
self.gpu = torch.device('cuda')
# Interpolation length and weights
self.interpolation_weights = i_weights
self.i_length = i_length
# N-grams
self.bigram = ngrams[0] if len(ngrams) >= 1 else None
self.trigram = ngrams[1] if len(ngrams) >= 2 else None
self.fourgram = ngrams[2] if len(ngrams) >= 3 else None
self.fivegram = ngrams[3] if len(ngrams) >= 4 else None
self.sixgram = ngrams[4] if len(ngrams) >= 5 else None
self.sevengram = ngrams[5] if len(ngrams) >= 6 else None
# Timing
self.get_time = get_time
self.lookup_time = None
def forward(self, probs, still_prompt, is_first, cur_pos, n_token_sample):
"""
Apply beam decoding to update generations.
Args:
probs (torch.Tensor): Next token probability distribution
still_prompt (torch.Tensor): Flags of prompts that should not generate yet (n_prompts, )
is_first (torch.Tensor): Flags of prompts that are on their first generation (n_prompts, )
cur_pos (int): Current generation position
n_token_sample (int): Number of tokens from model distribution to use
Return:
if standard beam search:
attention_change_ids (torch.Tensor): New indices in kv cache (n_prompts, n_drafts)
if mixed:
token_weights (torch.Tensor): Mixing weights (n_prompts, vocab_size)
"""
# Adjust input probabilities
probs = self.get_top_k(probs, 32000, n_token_sample)
reshaped_probs = probs.reshape(self.n_prompts, 1, -1)
reshaped_probs = reshaped_probs.repeat(1, self.n_drafts, 1)
# Ngram smoothing
if self.smoothing is not None:
if self.smoothing == "geom":
ngram_probs = self.ngram_probs(self.alive_seq, cur_pos, probs=probs)
# Make mask and normalize
prob_mask = reshaped_probs != 0
ngram_probs *= prob_mask
# Calculate logprobs and interpolate distributions
llm_log_probs = torch.log(reshaped_probs)
ngram_log_probs = torch.log(ngram_probs)
log_probs = (1 - self.alpha) * llm_log_probs + self.alpha * ngram_log_probs
# Apply penalty to drafts where no interpolation occurred
is_all_inf = (log_probs != float("-inf")).sum(dim=-1, keepdims=True) == 0
log_probs = torch.where(is_all_inf, (1 - self.alpha) * llm_log_probs - self.penalty, log_probs)
elif self.smoothing == "all":
ngram_probs = self.ngram_probs(self.alive_seq, cur_pos, probs=None)
log_probs = torch.log(ngram_probs)
else:
log_probs = torch.log(reshaped_probs)
curr_log_probs = self.alive_log_probs.unsqueeze(dim=2) + log_probs # [n_prompts, n_drafts, vocab_size]
# Warning if nan
if (torch.any(torch.isnan(curr_log_probs)).item()):
raise RuntimeWarning("nan in sequence log probs", file=self.output_file)
# Potential Sequences
flat_curr_log_probs = curr_log_probs.reshape(-1, self.vocab_size*self.n_drafts)
topk_log_probs, topk_idx = torch.topk(flat_curr_log_probs, 2 * self.n_drafts, dim=-1)
topk_beam_id = topk_idx // self.vocab_size # [n_prompts, 2 * n_drafts]
topk_idx = topk_idx % self.vocab_size # [n_prompts, 2 * n_drafts]
# First timestep uses top-k next tokens
is_first_idx = is_first.nonzero(as_tuple=True)[0]
if len(is_first_idx) != 0:
first_time_log_probs = log_probs[is_first_idx][:, 0, :].squeeze(dim=1)
first_time_log_probs, first_time_topk_idx = torch.topk(first_time_log_probs, 2 * self.n_drafts, dim=1)
topk_idx[is_first_idx] = first_time_topk_idx
topk_log_probs[is_first_idx] = self.alive_log_probs[is_first_idx, 0].unsqueeze(dim=1) + first_time_log_probs
# New sequences
topk_seq = torch.take_along_dim(self.alive_seq, topk_beam_id.unsqueeze(2), dim=1) # [n_prompts, 2 * n_drafts, vocab_size]
topk_seq[:, :, cur_pos] = topk_idx
topk_finished = topk_idx == self.tokenizer.eos_id
# Only update sequences for those that have begun generating
new_alive_seq, new_alive_log_probs = self.grow_alive(topk_seq, topk_log_probs, topk_finished)
new_fin_seq, new_fin_log_probs = self.grow_fin(topk_seq, topk_log_probs, topk_finished)
still_prompt_probs = still_prompt.reshape(-1, 1)
still_prompt_seqs = still_prompt.reshape(-1, 1, 1)
self.alive_seq = torch.where(still_prompt_seqs, self.alive_seq, new_alive_seq)
self.alive_log_probs = torch.where(still_prompt_probs, self.alive_log_probs, new_alive_log_probs)
self.fin_seq = torch.where(still_prompt_seqs, self.fin_seq, new_fin_seq)
self.fin_log_probs = torch.where(still_prompt_probs, self.fin_log_probs, new_fin_log_probs)
# Create superposition matrix and return it
topk_idx = self.alive_seq[:, :, cur_pos].reshape(self.n_prompts, -1)
token_weights = self.superposition_matrix(topk_idx)
return token_weights
def grow_alive(self, topk_seq, topk_log_probs, topk_finished):
"""
Extend running generations.
Args:
topk_seq (torch.Tensor): Top k sequences (n_prompts, 2 * n_drafts, vocab_size)
topk_log_probs (torch.Tensor): Log probabilities (n_prompts, 2 * n_drafts)
topk_finished (torch.Tensor): Whether a sequence is finished (n_prompts, 2 * n_drafts)
Returns:
new_alive_seq, new_alive_log_probs
"""
topk_log_probs = topk_log_probs + topk_finished * -INF
new_alive_log_probs, new_alive_idx = torch.topk(topk_log_probs, self.n_drafts, dim=1)
new_alive_seq = torch.take_along_dim(topk_seq, new_alive_idx.unsqueeze(2), dim=1)
return new_alive_seq, new_alive_log_probs
def grow_fin(self, topk_seq, topk_log_probs, topk_finished):
"""
Update stopped generations.
Args:
topk_seq (torch.Tensor): Top k sequences (n_prompts, 2 * n_drafts, vocab_size)
topk_log_probs (torch.Tensor): Log probabilities (n_prompts, 2 * n_drafts)
topk_finished (torch.Tensor): Whether a sequence is finished (n_prompts, 2 * n_drafts)
Returns:
new_fin_seq, new_fin_log_probs
"""
topk_log_probs = topk_log_probs + ~topk_finished * -INF
new_fin_seq = torch.cat([self.fin_seq, topk_seq], dim=1)
new_fin_log_probs = torch.cat([self.fin_log_probs, topk_log_probs], dim=1)
new_fin_log_probs, new_fin_idx = torch.topk(new_fin_log_probs, self.n_drafts, dim=1)
new_fin_seq = torch.take_along_dim(new_fin_seq, new_fin_idx.unsqueeze(2), dim=1)
return new_fin_seq, new_fin_log_probs
def get_top_k(self, probs, m, k):
"""
Zero out all but top-k tokens in a probability distribution.
Args:
probs (torch.Tensor): Probability distribution tensor.
m (float): Number of tokens to consider (only relevant when sampling).
k (int): Number of tokens to sample/keep.
Returns:
torch.Tensor: New probability distribution based on renormalized probabilities.
"""
n_prompts, _ = probs.shape
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
top_k_mask = torch.arange(probs.shape[-1])
top_k_mask = top_k_mask.expand(probs.shape[0], -1)
top_k_mask = top_k_mask >= m # Set to 1 past k elements
probs_sort[top_k_mask] = 0.0 # Zero wherever mask = 1
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_token = torch.gather(probs_idx, -1, torch.topk(probs_sort, k, dim=-1)[1])
# Set all other probs to 0
new_probs_map = torch.zeros(probs.shape, device="cuda").bool()
new_probs_map[torch.repeat_interleave(torch.arange(n_prompts), k), torch.flatten(next_token)] = True
new_probs = torch.where(new_probs_map, probs, 0)
# Renormalize
new_probs.div_(new_probs.sum(dim=-1, keepdim=True))
return new_probs
def superposition_matrix(self, tokens):
"""
Create superposition matrix based on provided tokens.
Args:
tokens (torch.Tensor): Tokens to mix (n_prompts, n_drafts)
Returns:
SUperposition matrix
"""
# Create superposition matrix
mixing_matrix = torch.zeros(self.n_prompts, self.vocab_size, device="cuda")
# Convert draft log probs to probabilities
weightings = log_prob_to_prob(self.alive_log_probs)
# Update probabilities in superposition matrix with draft probabilities
for p_idx in range(self.n_prompts):
for d_idx in range(self.n_drafts):
tok_idx = tokens[p_idx][d_idx]
mixing_matrix[p_idx][tok_idx] += weightings[p_idx][d_idx]
# Renormalize
mixing_matrix.div_(mixing_matrix.sum(dim=-1, keepdims=True))
return mixing_matrix
def ngram_probs(self, alive_seq, cur_pos, probs):
"""
Calculate and return next token distribution using ngram models.
Args:
alive_seq (torch.Tensor): Current drafts (n_prompts, n_drafts, seqlen)
cur_pos (int): Current timestep
probs (torch.Tensor): Current next probability distribution from model (n_prompts, vocab_size).
As described in the paper, only tokens w/nonzero probability in `prob` are considered for the
ngram distribution. However, passing in `None` as `probs` will consider all tokens.
Returns:
Next token distribution for each draft (n_prompts, n_drafts, vocab_size)
"""
if self.get_time:
# Start timer
start_time = datetime.now()
# Create distribution matrix
next_token_probs = torch.zeros(self.n_prompts, self.n_drafts, 32000, device="cuda")
if probs is not None:
# Loop over all prefixes
for p_idx in range(len(alive_seq)):
# List of possible tokens for the prefix
nz = torch.nonzero(probs[p_idx, :], as_tuple=True)[0].tolist()
# Generate next token distribution
for draft_idx in range(self.n_drafts):
i_mask = torch.sum(torch.tensor(self.i_length) <= cur_pos)
new_i_weights = self.interpolation_weights[:i_mask]
new_i_length = self.i_length[:i_mask]
# For each next token
for nt in nz:
# Calculate probability using ngram interpolation
for i, weight in zip(new_i_length, new_i_weights):
if cur_pos - i >= 0:
key = tuple(alive_seq[p_idx, draft_idx, cur_pos-i:cur_pos].tolist())
if i == 1:
prob = self.bigram.prob(key, nt)
elif i == 2:
prob = self.trigram.prob(key, nt)
elif i == 3:
prob = self.fourgram.prob(key, nt)
elif i == 4:
prob = self.fivegram.prob(key, nt)
elif i == 5:
prob = self.sixgram.prob(key, nt)
elif i == 6:
prob = self.sevengram.prob(key, nt)
if prob >= 0:
next_token_probs[p_idx, draft_idx, nt] += weight * prob
else:
for p_idx in range(len(alive_seq)):
for draft_idx in range(self.n_drafts):
i_mask = torch.sum(torch.tensor(self.i_length) <= cur_pos)
new_i_weights = self.interpolation_weights[:i_mask]
new_i_length = self.i_length[:i_mask]
for i, weight in zip(new_i_length, new_i_weights):
if cur_pos - i >= 0:
key = tuple(alive_seq[p_idx, draft_idx, cur_pos-i:cur_pos].tolist())
if i == 1:
ntd = self.bigram.ntd(key)
elif i == 2:
ntd = self.trigram.ntd(key)
elif i == 3:
ntd = self.fourgram.ntd(key)
elif i == 4:
ntd = self.fivegram.ntd(key)
elif i == 5:
ntd = self.sixgram.ntd(key)
elif i == 6:
ntd = self.sevengram.ntd(key)
if ntd is not None:
next_token_probs[p_idx, draft_idx, :] += weight * ntd
if self.get_time:
total_time = datetime.now() - start_time
self.lookup_time = total_time if self.lookup_time is None else self.lookup_time + total_time
return next_token_probs
def return_results(self, prompt_len=None):
"""
Return generations and perplexities
Args:
prompt_len (int): Length of prompt in tokens. If is None, then ppl is not calculated.
Returns:
(self.alive_seq, alive_ppl), (self.fin_seq, fin_ppl)
OR
(self.alive_seq, alive_ppl), (self.fin_seq, fin_ppl), self.lookup_time
"""
# PPL
alive_ppl = 0
fin_ppl = 0
if prompt_len is not None:
alive_ppl = torch.exp(self.alive_log_probs / (-1 * (self.alive_seq.size(dim=-1)-prompt_len)))
# Fin ppl
fin_seq_lengths = (self.fin_seq != self.tokenizer.pad_id).sum(dim=-1)
fin_ppl = torch.exp(self.fin_log_probs / (-1 * (fin_seq_lengths - prompt_len)))
fin_ppl += ((fin_ppl == 0) * float("inf"))
# print time
if not self.get_time:
return (self.alive_seq.to(torch.long), alive_ppl), (self.fin_seq.to(torch.long), fin_ppl)
else:
return (self.alive_seq.to(torch.long), alive_ppl), (self.fin_seq.to(torch.long), fin_ppl), self.lookup_time |