File size: 6,810 Bytes
8ee37ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import glob
import streamlit as st
import wget
from PIL import Image
import torch
import cv2
import os
import time
st.set_page_config(layout="wide")
cfg_model_path = 'models/yolov5s.pt'
model = None
confidence = .25
def image_input(data_src):
img_file = None
if data_src == 'Sample data':
# get all sample images
img_path = glob.glob('data/sample_images/*')
img_slider = st.slider("Select a test image.", min_value=1, max_value=len(img_path), step=1)
img_file = img_path[img_slider - 1]
else:
img_bytes = st.sidebar.file_uploader("Upload an image", type=['png', 'jpeg', 'jpg',"jfif","iff"])
if img_bytes:
img_file = "data/uploaded_data/upload." + img_bytes.name.split('.')[-1]
Image.open(img_bytes).save(img_file)
if img_file:
col1, col2 = st.columns(2)
with col1:
st.image(img_file, caption="Selected Image")
with col2:
img = infer_image(img_file)
st.image(img, caption="Model prediction")
def video_input(data_src):
vid_file = None
if data_src == 'Sample data':
vid_file = "data/sample_videos/sample.mp4"
else:
vid_bytes = st.sidebar.file_uploader("Upload a video", type=['mp4', 'mpv', 'avi'])
if vid_bytes:
vid_file = "data/uploaded_data/upload." + vid_bytes.name.split('.')[-1]
with open(vid_file, 'wb') as out:
out.write(vid_bytes.read())
if vid_file:
cap = cv2.VideoCapture(vid_file)
custom_size = st.sidebar.checkbox("Custom frame size")
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
if custom_size:
width = st.sidebar.number_input("Width", min_value=120, step=20, value=width)
height = st.sidebar.number_input("Height", min_value=120, step=20, value=height)
fps = 0
st1, st2, st3 = st.columns(3)
with st1:
st.markdown("## Height")
st1_text = st.markdown(f"{height}")
with st2:
st.markdown("## Width")
st2_text = st.markdown(f"{width}")
with st3:
st.markdown("## FPS")
st3_text = st.markdown(f"{fps}")
st.markdown("---")
output = st.empty()
prev_time = 0
curr_time = 0
update_frequency = 5 # Update every 5 frames
frames_processed = 0
last_fps_update = time.time()
while True:
ret, frame = cap.read()
if not ret:
st.write("Can't read frame, stream ended? Exiting ....")
break
frames_processed += 1
if frames_processed >= update_frequency:
frames_processed = 0 # Reset counter
frame = cv2.resize(frame, (width, height))
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
output_img = infer_image(frame)
# Update the UI every update_frequency frames
output.image(output_img)
curr_time = time.time()
fps = 1 / (curr_time - prev_time)
prev_time = curr_time
# Update FPS UI every second
if curr_time - last_fps_update >= 1:
st3_text.markdown(f"**{fps:.2f}**")
last_fps_update = curr_time
cap.release()
def infer_image(img, size=None):
model.conf = confidence
result = model(img, size=size) if size else model(img)
result.render()
image = Image.fromarray(result.ims[0])
return image
@st.cache_resource
def load_model(path, device):
model_ = torch.hub.load('ultralytics/yolov5', 'custom', path=path, force_reload=True)
model_.to(device)
print("model to ", device)
return model_
@st.cache_resource
def download_model(url):
model_file = wget.download(url, out="models")
return model_file
def get_user_model():
model_src = st.sidebar.radio("Model source", ["file upload", "url"])
model_file = None
if model_src == "file upload":
model_bytes = st.sidebar.file_uploader("Upload a model file", type=['pt'])
if model_bytes:
model_file = "models/uploaded_" + model_bytes.name
with open(model_file, 'wb') as out:
out.write(model_bytes.read())
else:
url = st.sidebar.text_input("model url")
if url:
model_file_ = download_model(url)
if model_file_.split(".")[-1] == "pt":
model_file = model_file_
return model_file
def main():
# global variables
global model, confidence, cfg_model_path
st.title("Object Recognition Dashboard")
st.sidebar.title("Settings")
# upload model
model_src = st.sidebar.radio("Select yolov5 weight file", ["Use our demo model 5s", "Use your own model"])
# URL, upload file (max 200 mb)
if model_src == "Use your own model":
user_model_path = get_user_model()
if user_model_path:
cfg_model_path = user_model_path
st.sidebar.text(cfg_model_path.split("/")[-1])
st.sidebar.markdown("---")
# check if model file is available
if not os.path.isfile(cfg_model_path):
st.warning("Model file not available!!!, please added to the model folder.", icon="⚠️")
else:
# device options
if torch.cuda.is_available():
device_option = st.sidebar.radio("Select Device", ['cpu', 'cuda'], disabled=False, index=0)
else:
device_option = st.sidebar.radio("Select Device", ['cpu', 'cuda'], disabled=True, index=0)
# load model
model = load_model(cfg_model_path, device_option)
# confidence slider
confidence = st.sidebar.slider('Confidence', min_value=0.1, max_value=1.0, value=.45)
# custom classes
if st.sidebar.checkbox("Custom Classes"):
model_names = list(model.names.values())
assigned_class = st.sidebar.multiselect("Select Classes", model_names, default=[model_names[0]])
classes = [model_names.index(name) for name in assigned_class]
model.classes = classes
else:
model.classes = list(model.names.keys())
st.sidebar.markdown("---")
# input options
input_option = st.sidebar.radio("Select input type: ", ['image', 'video'])
# input src option
data_src = st.sidebar.radio("Select input source: ", ['Sample data', 'Upload your own data'])
if input_option == 'image':
image_input(data_src)
else:
video_input(data_src)
if __name__ == "__main__":
try:
main()
except SystemExit:
pass
|