mars / mars.py
ernanhughes
main
b603713
raw
history blame
7.29 kB
import os
import pandas as pd
import socket
import dspy
from dspy import Signature, InputField, OutputField, Module, Predict, ChainOfThought, LM
from edgar import Company, set_identity
from edgar.xbrl2 import XBRL
import litellm
litellm._turn_on_debug()
import logging
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.FileHandler('mars.log', 'w', 'utf-8')])
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
# ==== DSPy CONFIG ====
# Check if running on Hugging Face Spaces
running_in_spaces = os.getenv("SYSTEM") == "spaces" or "hf.space" in socket.getfqdn()
if running_in_spaces:
print("🔍 Detected: Running in Hugging Face Spaces")
dspy.configure(
lm=LM(
model='SUFE-AIFLM-Lab/Fin-R1',
api_base='https://api-inference.huggingface.co/models',
api_key=os.getenv("HF_API_KEY")
)
)
else:
print("💻 Detected: Running locally")
dspy.configure(
lm=LM(
model='ollama_chat/hf.co/ernanhughes/Fin-R1-Q8_0-GGUF',
api_base='http://localhost:11434',
api_key='' # Ollama does not require key
)
)
# ==== DSPy SIGNATURES ====
class AnalyzeMargins(Signature):
context = InputField()
question = InputField()
signal = OutputField()
rationale = OutputField()
class FinancialTrendAnalysis(Signature):
statements = InputField()
question = InputField()
signal = OutputField()
rationale = OutputField()
class PlannerSignature(Signature):
base_question = InputField()
steps = OutputField(desc="List of reasoning substeps to answer the question")
# ==== DSPy MODULES ====
class IncomeStatementAnalyzer(Module):
def __init__(self):
super().__init__()
self.analyze = Predict(FinancialTrendAnalysis)
def forward(self, statements, question):
return self.analyze(statements=statements, question=question)
class TeacherQuestion(Signature):
prompt = InputField()
question = OutputField()
class TeacherQuestioner(Module):
def __init__(self, use_chain_of_thought: bool = True):
super().__init__()
self.generate = ChainOfThought(TeacherQuestion) if use_chain_of_thought else Predict(TeacherQuestion)
def forward(self, prompt):
return self.generate(prompt=prompt)
class CritiqueQuestion(Signature):
question = InputField()
critique = OutputField()
class CriticJudge(Module):
def __init__(self):
super().__init__()
self.evaluate = Predict(CritiqueQuestion)
def forward(self, question):
return self.evaluate(question=question)
class MarginAnalyzer(Module):
def __init__(self):
super().__init__()
self.analyze = ChainOfThought(AnalyzeMargins)
def forward(self, context, question, teacher_question=None):
if teacher_question:
question = f"{question} Consider also: {teacher_question}"
return self.analyze(context=context, question=question)
class PlannerModule(Module):
def __init__(self):
super().__init__()
self.plan = ChainOfThought(PlannerSignature)
def forward(self, base_question):
return self.plan(base_question=base_question)
# ==== DSPy PROGRAM ====
class MarsAnalysisProgram(dspy.Program):
def __init__(self, planner, teacher, critic, student):
super().__init__()
self.planner = planner
self.teacher = teacher
self.critic = critic
self.student = student
def forward(self, context: str, base_question: str):
plan_out = self.planner(base_question=base_question)
teacher_out = self.teacher(prompt=context + "\n\n" + base_question)
critic_out = self.critic(question=teacher_out.question)
if "yes" in critic_out.critique.lower():
final_question = f"{base_question} Consider also: {teacher_out.question}"
else:
final_question = base_question
student_out = self.student(context=context, question=final_question)
return {
"plan": plan_out.steps,
"teacher_question": teacher_out.question,
"critique": critic_out.critique,
"final_question": final_question,
"signal": student_out.signal,
"rationale": student_out.rationale
}
# ==== UTILS ====
def estimate_token_count(markdown_list: list[str], chars_per_token: int = 4) -> int:
combined_text = "\n\n".join(markdown_list)
return len(combined_text) // chars_per_token
def build_analysis_prompt(ticker: str, markdown_list: list[str]) -> str:
header = f"You are a financial analysis model. Below are the last {len(markdown_list)} income statements from {ticker}.\n\n"
instructions = (
"Analyze the trend in revenue and operating income.\n"
"Decide if profitability is improving or declining.\n"
"Then provide a trading signal.\n\n"
"Respond with:\n"
"Signal: <Bullish/Bearish/Neutral>\n"
"Rationale: <short explanation>\n\n"
)
body = "\n\n".join(markdown_list)
return header + instructions + body
# ==== EDGAR FETCHER ====
class EDGARFetcher:
def __init__(self, ticker: str, form: str = "10-Q", n: int = 3):
self.identity = "[email protected]"
self.ticker = ticker
self.form = form
self.n = n
set_identity(self.identity)
def fetch_markdown_statements(self):
filings = Company(self.ticker).latest(form=self.form, n=self.n)
statements = []
for filing in filings:
xbrl = XBRL.from_filing(filing)
income_statement = xbrl.statements.income_statement()
df = income_statement.to_dataframe()
statements.append(self.rich_report_to_text(df))
return statements
@staticmethod
def rich_report_to_text(df: pd.DataFrame) -> str:
lines = []
for _, row in df.iterrows():
label = row.get("original_label") or row.get("label") or row.get("concept")
values = [
f"{col}: {row[col]}" for col in df.columns
if isinstance(col, str) and col.startswith("20") and pd.notna(row[col])
]
if values:
lines.append(f"{label}: " + " | ".join(values))
return "\n".join(lines)
def analyze_ticker(ticker: str):
"""
Run the full MARS analysis pipeline for a given stock ticker.
Args:
ticker (str): Stock symbol (e.g. 'TSLA')
Returns:
dict: MARS pipeline result containing plan, teacher_question, critique,
final_question, signal, and rationale
"""
fetcher = EDGARFetcher(ticker=ticker)
statements = fetcher.fetch_markdown_statements()
prompt = build_analysis_prompt(ticker, statements)
planner = PlannerModule()
teacher = TeacherQuestioner()
critic = CriticJudge()
student = MarginAnalyzer()
program = MarsAnalysisProgram(planner, teacher, critic, student)
result = program(
context=prompt,
base_question="Is the company improving its profitability?"
)
logger.info(f"Result for stock {ticker}:\n{result}")
return result