File size: 7,298 Bytes
d20f268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed92786
51c109c
d20f268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
import pandas as pd
import socket
import dspy
from dspy import Signature, InputField, OutputField, Module, Predict, ChainOfThought, LM
from edgar import Company, set_identity
from edgar.xbrl2 import XBRL

import litellm
litellm._turn_on_debug()
import logging
logging.basicConfig(level=logging.DEBUG,
                    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
                    handlers=[logging.FileHandler('mars.log', 'w', 'utf-8')])

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)

# ==== DSPy CONFIG ====
# Check if running on Hugging Face Spaces
running_in_spaces = os.getenv("SYSTEM") == "spaces" or "hf.space" in socket.getfqdn()
if running_in_spaces:
    print("🔍 Detected: Running in Hugging Face Spaces")
    dspy.configure(
        lm=LM(
            model='huggingface/SUFE-AIFLM-Lab/Fin-R1',
            api_base='https://api-inference.huggingface.co',
            api_key=os.getenv("HF_API_KEY")
        )
    )
else:
    print("💻 Detected: Running locally")
    dspy.configure(
        lm=LM(
            model='ollama_chat/hf.co/ernanhughes/Fin-R1-Q8_0-GGUF',
            api_base='http://localhost:11434',
            api_key=''  # Ollama does not require key
        )
    )


# ==== DSPy SIGNATURES ====
class AnalyzeMargins(Signature):
    context = InputField()
    question = InputField()
    signal = OutputField()
    rationale = OutputField()

class FinancialTrendAnalysis(Signature):
    statements = InputField()
    question = InputField()
    signal = OutputField()
    rationale = OutputField()

class PlannerSignature(Signature):
    base_question = InputField()
    steps = OutputField(desc="List of reasoning substeps to answer the question")

# ==== DSPy MODULES ====
class IncomeStatementAnalyzer(Module):
    def __init__(self):
        super().__init__()
        self.analyze = Predict(FinancialTrendAnalysis)

    def forward(self, statements, question):
        return self.analyze(statements=statements, question=question)

class TeacherQuestion(Signature):
    prompt = InputField()
    question = OutputField()

class TeacherQuestioner(Module):
    def __init__(self, use_chain_of_thought: bool = True):
        super().__init__()
        self.generate = ChainOfThought(TeacherQuestion) if use_chain_of_thought else Predict(TeacherQuestion)

    def forward(self, prompt):
        return self.generate(prompt=prompt)

class CritiqueQuestion(Signature):
    question = InputField()
    critique = OutputField()

class CriticJudge(Module):
    def __init__(self):
        super().__init__()
        self.evaluate = Predict(CritiqueQuestion)

    def forward(self, question):
        return self.evaluate(question=question)

class MarginAnalyzer(Module):
    def __init__(self):
        super().__init__()
        self.analyze = ChainOfThought(AnalyzeMargins)

    def forward(self, context, question, teacher_question=None):
        if teacher_question:
            question = f"{question} Consider also: {teacher_question}"
        return self.analyze(context=context, question=question)

class PlannerModule(Module):
    def __init__(self):
        super().__init__()
        self.plan = ChainOfThought(PlannerSignature)

    def forward(self, base_question):
        return self.plan(base_question=base_question)

# ==== DSPy PROGRAM ====
class MarsAnalysisProgram(dspy.Program):
    def __init__(self, planner, teacher, critic, student):
        super().__init__()
        self.planner = planner
        self.teacher = teacher
        self.critic = critic
        self.student = student

    def forward(self, context: str, base_question: str):
        plan_out = self.planner(base_question=base_question)
        teacher_out = self.teacher(prompt=context + "\n\n" + base_question)
        critic_out = self.critic(question=teacher_out.question)

        if "yes" in critic_out.critique.lower():
            final_question = f"{base_question} Consider also: {teacher_out.question}"
        else:
            final_question = base_question

        student_out = self.student(context=context, question=final_question)

        return {
            "plan": plan_out.steps,
            "teacher_question": teacher_out.question,
            "critique": critic_out.critique,
            "final_question": final_question,
            "signal": student_out.signal,
            "rationale": student_out.rationale
        }

# ==== UTILS ====
def estimate_token_count(markdown_list: list[str], chars_per_token: int = 4) -> int:
    combined_text = "\n\n".join(markdown_list)
    return len(combined_text) // chars_per_token

def build_analysis_prompt(ticker: str, markdown_list: list[str]) -> str:
    header = f"You are a financial analysis model. Below are the last {len(markdown_list)} income statements from {ticker}.\n\n"
    instructions = (
        "Analyze the trend in revenue and operating income.\n"
        "Decide if profitability is improving or declining.\n"
        "Then provide a trading signal.\n\n"
        "Respond with:\n"
        "Signal: <Bullish/Bearish/Neutral>\n"
        "Rationale: <short explanation>\n\n"
    )
    body = "\n\n".join(markdown_list)
    return header + instructions + body

# ==== EDGAR FETCHER ====
class EDGARFetcher:
    def __init__(self, ticker: str, form: str = "10-Q", n: int = 3):
        self.identity = "[email protected]"
        self.ticker = ticker
        self.form = form
        self.n = n
        set_identity(self.identity)

    def fetch_markdown_statements(self):
        filings = Company(self.ticker).latest(form=self.form, n=self.n)
        statements = []
        for filing in filings:
            xbrl = XBRL.from_filing(filing)
            income_statement = xbrl.statements.income_statement()
            df = income_statement.to_dataframe()
            statements.append(self.rich_report_to_text(df))
        return statements

    @staticmethod
    def rich_report_to_text(df: pd.DataFrame) -> str:
        lines = []
        for _, row in df.iterrows():
            label = row.get("original_label") or row.get("label") or row.get("concept")
            values = [
                f"{col}: {row[col]}" for col in df.columns
                if isinstance(col, str) and col.startswith("20") and pd.notna(row[col])
            ]
            if values:
                lines.append(f"{label}: " + " | ".join(values))
        return "\n".join(lines)

def analyze_ticker(ticker: str):
    """
    Run the full MARS analysis pipeline for a given stock ticker.

    Args:
        ticker (str): Stock symbol (e.g. 'TSLA')

    Returns:
        dict: MARS pipeline result containing plan, teacher_question, critique,
              final_question, signal, and rationale
    """
    fetcher = EDGARFetcher(ticker=ticker)
    statements = fetcher.fetch_markdown_statements()
    prompt = build_analysis_prompt(ticker, statements)

    planner = PlannerModule()
    teacher = TeacherQuestioner()
    critic = CriticJudge()
    student = MarginAnalyzer()

    program = MarsAnalysisProgram(planner, teacher, critic, student)
    result = program(
        context=prompt,
        base_question="Is the company improving its profitability?"
    )
    logger.info(f"Result for stock {ticker}:\n{result}")

    return result