File size: 1,964 Bytes
911b23c
e62ae46
911b23c
 
 
 
 
7e55c71
 
 
2eff9ee
7e55c71
2eff9ee
7e55c71
 
911b23c
 
 
 
 
 
 
 
 
 
 
2eff9ee
911b23c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e62ae46
911b23c
 
 
 
 
 
e62ae46
 
 
 
 
 
911b23c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" if torch.cuda.is_available() else "cpu"  # Automatically detect GPU or CPU
model_name = "tanusrich/Mental_Health_Chatbot"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16,  # Reduce memory usage
    device_map="cpu",  # Automatically assigns to GPU if available
    low_cpu_mem_usage=True,
    max_memory={0: "3.5GiB", "cpu": "12GiB"}, # Optimize CPU memory
    offload_folder=None
)

tokenizer = AutoTokenizer.from_pretrained(model_name)
'''
model_save_path = "./model"
# Save model
model.save_pretrained(model_save_path)

# Save tokenizer
tokenizer.save_pretrained(model_save_path)'''

def generate_response(user_input):
    inputs = tokenizer(user_input, return_tensors="pt").to("cpu")
    with torch.no_grad():
        output = model.generate(
            **inputs,
            max_new_tokens=150,
            temperature=0.7,
            top_k=50,
            top_p=0.9,
            repetition_penalty=1.2,
            pad_token_id=tokenizer.eos_token_id
        )
    response = tokenizer.decode(output[0], skip_special_tokens=True)
    # Extract only chatbot's latest response
    chatbot_response = response.split("Chatbot:")[-1].strip()

    # Update conversation history
    conversation_history += chatbot_response + "\n"
    return chatbot_response

# Continuous conversation loop
'''while True:
    user_input = input("You: ")  # Take user input
    if user_input.lower() in ["exit", "quit", "stop"]:
        print("Chatbot: Goodbye!")
        break

    response = generate_response(user_input)
    print("Chatbot:", response)'''


# Initialize the ChatInterface
chatbot = gr.ChatInterface(fn=generate_response, title="Mental Health Chatbot")
chatbot.launch()
    
    
'''
# Example
user_input = "I'm feeling suicidal."
response = generate_response(user_input)
print("Chatbot: ", response)
'''