Spaces:
Sleeping
Sleeping
Eric P. Nusbaum
commited on
Commit
·
ae5135e
1
Parent(s):
029bb24
Update to use ONNX
Browse files
app.py
CHANGED
@@ -1,241 +1,115 @@
|
|
1 |
-
import
|
2 |
-
import tensorflow as tf
|
3 |
import numpy as np
|
|
|
|
|
4 |
from PIL import Image, ImageDraw, ImageFont
|
5 |
-
import
|
6 |
-
|
7 |
-
# Suppress TensorFlow logging for cleaner logs
|
8 |
-
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
9 |
|
10 |
-
#
|
11 |
-
|
|
|
|
|
12 |
|
13 |
# Load labels
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
def
|
52 |
-
"""
|
53 |
-
Preprocess the input image:
|
54 |
-
- Resize to target dimensions
|
55 |
-
- Convert to numpy array
|
56 |
-
- Normalize pixel values
|
57 |
-
- Convert RGB to BGR if required by the model
|
58 |
-
"""
|
59 |
-
image = image.resize((TARGET_WIDTH, TARGET_HEIGHT))
|
60 |
-
image_np = np.array(image).astype(np.float32)
|
61 |
-
image_np = image_np / 255.0 # Normalize to [0,1]
|
62 |
-
if image_np.shape[-1] == 3:
|
63 |
-
# Convert RGB to BGR if required by your model
|
64 |
-
image_np = image_np[..., (2, 1, 0)]
|
65 |
-
image_np = np.expand_dims(image_np, axis=0) # Add batch dimension
|
66 |
-
return image_np
|
67 |
-
|
68 |
-
def draw_boxes(image, boxes, classes, scores, threshold=0.5):
|
69 |
-
"""
|
70 |
-
Draw bounding boxes and labels on the image.
|
71 |
-
Args:
|
72 |
-
image (PIL.Image): The original image.
|
73 |
-
boxes (np.array): Array of bounding boxes.
|
74 |
-
classes (np.array): Array of class IDs.
|
75 |
-
scores (np.array): Array of confidence scores.
|
76 |
-
threshold (float): Confidence threshold to filter detections.
|
77 |
-
Returns:
|
78 |
-
PIL.Image: Annotated image.
|
79 |
-
"""
|
80 |
draw = ImageDraw.Draw(image)
|
81 |
try:
|
82 |
-
font = ImageFont.truetype("arial.ttf",
|
83 |
except IOError:
|
84 |
font = ImageFont.load_default()
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
return image
|
90 |
|
91 |
-
# Otherwise, proceed to draw bounding boxes
|
92 |
for box, cls, score in zip(boxes[0], classes[0], scores[0]):
|
93 |
-
if score <
|
94 |
continue
|
95 |
-
|
96 |
-
#
|
97 |
ymin, xmin, ymax, xmax = box
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
if cls_index < 0 or cls_index >= len(labels):
|
109 |
-
label_str = f"cls_{int(cls)}: {score:.2f}"
|
110 |
-
else:
|
111 |
-
label_str = f"{labels[cls_index]}: {score:.2f}"
|
112 |
-
|
113 |
-
# Calculate text size using textbbox
|
114 |
-
text_bbox = draw.textbbox((0, 0), label_str, font=font)
|
115 |
-
text_width = text_bbox[2] - text_bbox[0]
|
116 |
-
text_height = text_bbox[3] - text_bbox[1]
|
117 |
-
|
118 |
-
# Draw label background
|
119 |
-
draw.rectangle([(left, top - text_height - 4),
|
120 |
-
(left + text_width + 4, top)], fill="red")
|
121 |
-
|
122 |
-
# Draw text
|
123 |
-
draw.text((left + 2, top - text_height - 2),
|
124 |
-
label_str, fill="white", font=font)
|
125 |
-
|
126 |
return image
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
Perform inference on the input image and return the annotated image.
|
131 |
-
Args:
|
132 |
-
image (PIL.Image): Uploaded image.
|
133 |
-
Returns:
|
134 |
-
PIL.Image: Annotated image with bounding boxes and labels.
|
135 |
-
"""
|
136 |
-
try:
|
137 |
-
# Preprocess the image
|
138 |
-
input_array = preprocess_image(image)
|
139 |
|
140 |
-
|
141 |
-
|
|
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
if boxes.size == 0 or classes.size == 0 or scores.size == 0:
|
155 |
-
print("[DEBUG] No detections returned by the model.")
|
156 |
-
return _draw_no_detection_message(image)
|
157 |
-
|
158 |
-
# Annotate the image with bounding boxes and labels
|
159 |
-
annotated_image = draw_boxes(image.copy(), boxes, classes, scores, threshold=0.5)
|
160 |
-
print("[DEBUG] Annotation completed.")
|
161 |
-
return annotated_image
|
162 |
-
|
163 |
-
except Exception as e:
|
164 |
-
# Log the exception for debugging
|
165 |
-
print(f"Exception during prediction: {e}")
|
166 |
-
|
167 |
-
# Return an error image with the error message
|
168 |
-
return _draw_error_message()
|
169 |
-
|
170 |
-
def _draw_no_detection_message(image):
|
171 |
-
"""Draws a simple 'No detections found' message on the image."""
|
172 |
-
draw = ImageDraw.Draw(image)
|
173 |
-
try:
|
174 |
-
font = ImageFont.truetype("arial.ttf", 20)
|
175 |
-
except IOError:
|
176 |
-
font = ImageFont.load_default()
|
177 |
-
message = "No detections found."
|
178 |
-
text_bbox = draw.textbbox((0, 0), message, font=font)
|
179 |
-
text_width = text_bbox[2] - text_bbox[0]
|
180 |
-
text_height = text_bbox[3] - text_bbox[1]
|
181 |
-
|
182 |
-
# Center the message
|
183 |
-
x = (image.width - text_width) / 2
|
184 |
-
y = (image.height - text_height) / 2
|
185 |
-
draw.rectangle(
|
186 |
-
[(x - 10, y - 10), (x + text_width + 10, y + text_height + 10)],
|
187 |
-
fill="black"
|
188 |
-
)
|
189 |
-
draw.text((x, y), message, fill="white", font=font)
|
190 |
-
return image
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
draw = ImageDraw.Draw(error_image)
|
196 |
-
try:
|
197 |
-
font = ImageFont.truetype("arial.ttf", 20)
|
198 |
-
except IOError:
|
199 |
-
font = ImageFont.load_default()
|
200 |
-
error_text = "Error during prediction."
|
201 |
-
text_bbox = draw.textbbox((0, 0), error_text, font=font)
|
202 |
-
text_width = text_bbox[2] - text_bbox[0]
|
203 |
-
text_height = text_bbox[3] - text_bbox[1]
|
204 |
-
|
205 |
-
draw.rectangle(
|
206 |
-
[
|
207 |
-
((500 - text_width) / 2 - 10, (500 - text_height) / 2 - 10),
|
208 |
-
((500 + text_width) / 2 + 10, (500 + text_height) / 2 + 10)
|
209 |
-
],
|
210 |
-
fill="black"
|
211 |
-
)
|
212 |
-
draw.text(
|
213 |
-
((500 - text_width) / 2, (500 - text_height) / 2),
|
214 |
-
error_text,
|
215 |
-
fill="white",
|
216 |
-
font=font
|
217 |
-
)
|
218 |
-
return error_image
|
219 |
-
|
220 |
-
# Define Gradio interface using the new API
|
221 |
-
title = "JunkWaxHero 🦸♂️ - Baseball Card Set Identifier"
|
222 |
-
description = "Upload an image of a baseball card, and JunkWaxHero will identify the set it belongs to with high accuracy."
|
223 |
-
|
224 |
-
# Verify that example images exist to prevent FileNotFoundError
|
225 |
-
example_images = ["examples/card1.jpg", "examples/card2.jpg", "examples/card3.jpg"]
|
226 |
-
valid_examples = [img for img in example_images if os.path.exists(img)]
|
227 |
-
if not valid_examples:
|
228 |
-
valid_examples = None # Remove examples if none exist
|
229 |
|
|
|
230 |
iface = gr.Interface(
|
231 |
-
fn=
|
232 |
inputs=gr.Image(type="pil"),
|
233 |
-
outputs=gr.Image(type="pil"),
|
234 |
-
title=
|
235 |
-
description=
|
236 |
-
examples=
|
237 |
-
flagging_mode="never" # Use new Gradio parameter
|
238 |
)
|
239 |
|
240 |
if __name__ == "__main__":
|
241 |
iface.launch()
|
|
|
|
1 |
+
import os
|
|
|
2 |
import numpy as np
|
3 |
+
import onnx
|
4 |
+
import onnxruntime
|
5 |
from PIL import Image, ImageDraw, ImageFont
|
6 |
+
import gradio as gr
|
|
|
|
|
|
|
7 |
|
8 |
+
# Constants
|
9 |
+
PROB_THRESHOLD = 0.5 # Minimum probability to show results
|
10 |
+
MODEL_PATH = os.path.join("onnx", "model.onnx")
|
11 |
+
LABELS_PATH = os.path.join("onnx", "labels.txt")
|
12 |
|
13 |
# Load labels
|
14 |
+
with open(LABELS_PATH, "r") as f:
|
15 |
+
LABELS = f.read().strip().split("\n")
|
16 |
+
|
17 |
+
class Model:
|
18 |
+
def __init__(self, model_filepath):
|
19 |
+
self.session = onnxruntime.InferenceSession(model_filepath)
|
20 |
+
assert len(self.session.get_inputs()) == 1
|
21 |
+
self.input_shape = self.session.get_inputs()[0].shape[2:] # (H, W)
|
22 |
+
self.input_name = self.session.get_inputs()[0].name
|
23 |
+
self.input_type = {'tensor(float)': np.float32, 'tensor(float16)': np.float16}.get(
|
24 |
+
self.session.get_inputs()[0].type, np.float32
|
25 |
+
)
|
26 |
+
self.output_names = [o.name for o in self.session.get_outputs()]
|
27 |
+
|
28 |
+
self.is_bgr = False
|
29 |
+
self.is_range255 = False
|
30 |
+
onnx_model = onnx.load(model_filepath)
|
31 |
+
for metadata in onnx_model.metadata_props:
|
32 |
+
if metadata.key == 'Image.BitmapPixelFormat' and metadata.value == 'Bgr8':
|
33 |
+
self.is_bgr = True
|
34 |
+
elif metadata.key == 'Image.NominalPixelRange' and metadata.value == 'NominalRange_0_255':
|
35 |
+
self.is_range255 = True
|
36 |
+
|
37 |
+
def predict(self, image: Image.Image):
|
38 |
+
# Preprocess image
|
39 |
+
image_resized = image.resize(self.input_shape)
|
40 |
+
input_array = np.array(image_resized, dtype=np.float32)[np.newaxis, :, :, :]
|
41 |
+
input_array = input_array.transpose((0, 3, 1, 2)) # (N, C, H, W)
|
42 |
+
if self.is_bgr:
|
43 |
+
input_array = input_array[:, (2, 1, 0), :, :]
|
44 |
+
if not self.is_range255:
|
45 |
+
input_array = input_array / 255.0 # Normalize to [0,1]
|
46 |
+
|
47 |
+
# Run inference
|
48 |
+
outputs = self.session.run(self.output_names, {self.input_name: input_array.astype(self.input_type)})
|
49 |
+
return {name: outputs[i] for i, name in enumerate(self.output_names)}
|
50 |
+
|
51 |
+
def draw_boxes(image: Image.Image, outputs: dict):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
draw = ImageDraw.Draw(image)
|
53 |
try:
|
54 |
+
font = ImageFont.truetype("arial.ttf", size=16)
|
55 |
except IOError:
|
56 |
font = ImageFont.load_default()
|
57 |
|
58 |
+
boxes = outputs.get('detected_boxes', [])
|
59 |
+
classes = outputs.get('detected_classes', [])
|
60 |
+
scores = outputs.get('detected_scores', [])
|
|
|
61 |
|
|
|
62 |
for box, cls, score in zip(boxes[0], classes[0], scores[0]):
|
63 |
+
if score < PROB_THRESHOLD:
|
64 |
continue
|
65 |
+
label = LABELS[int(cls)]
|
66 |
+
# Assuming box format: [ymin, xmin, ymax, xmax] normalized [0,1]
|
67 |
ymin, xmin, ymax, xmax = box
|
68 |
+
width, height = image.size
|
69 |
+
left = xmin * width
|
70 |
+
right = xmax * width
|
71 |
+
top = ymin * height
|
72 |
+
bottom = ymax * height
|
73 |
+
draw.rectangle([left, top, right, bottom], outline="red", width=2)
|
74 |
+
text = f"{label}: {score:.2f}"
|
75 |
+
text_size = draw.textsize(text, font=font)
|
76 |
+
draw.rectangle([left, top - text_size[1], left + text_size[0], top], fill="red")
|
77 |
+
draw.text((left, top - text_size[1]), text, fill="white", font=font)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
return image
|
79 |
|
80 |
+
# Initialize model
|
81 |
+
model = Model(MODEL_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
def detect_objects(image):
|
84 |
+
outputs = model.predict(image)
|
85 |
+
annotated_image = draw_boxes(image.copy(), outputs)
|
86 |
|
87 |
+
# Prepare detection summary
|
88 |
+
detections = []
|
89 |
+
boxes = outputs.get('detected_boxes', [])
|
90 |
+
classes = outputs.get('detected_classes', [])
|
91 |
+
scores = outputs.get('detected_scores', [])
|
92 |
|
93 |
+
for box, cls, score in zip(boxes[0], classes[0], scores[0]):
|
94 |
+
if score < PROB_THRESHOLD:
|
95 |
+
continue
|
96 |
+
label = LABELS[int(cls)]
|
97 |
+
detections.append(f"{label}: {score:.2f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
detection_summary = "\n".join(detections) if detections else "No objects detected."
|
100 |
+
|
101 |
+
return annotated_image, detection_summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
# Gradio Interface
|
104 |
iface = gr.Interface(
|
105 |
+
fn=detect_objects,
|
106 |
inputs=gr.Image(type="pil"),
|
107 |
+
outputs=[gr.Image(type="pil", label="Detected Objects"), gr.Textbox(label="Detections")],
|
108 |
+
title="Object Detection with ONNX Model",
|
109 |
+
description="Upload an image to detect objects using the ONNX model.",
|
110 |
+
examples=["examples/card1.jpg", "examples/card2.jpg", "examples/card3.jpg"]
|
|
|
111 |
)
|
112 |
|
113 |
if __name__ == "__main__":
|
114 |
iface.launch()
|
115 |
+
|