Spaces:
Sleeping
Sleeping
Eric P. Nusbaum
commited on
Commit
·
633e7c4
1
Parent(s):
4e0ba39
Update to use ONNX
Browse files- app.py +28 -11
- requirements.txt +1 -1
app.py
CHANGED
@@ -50,8 +50,12 @@ class Model:
|
|
50 |
|
51 |
def draw_boxes(image: Image.Image, outputs: dict):
|
52 |
draw = ImageDraw.Draw(image)
|
|
|
|
|
|
|
|
|
53 |
try:
|
54 |
-
font = ImageFont.truetype("arial.ttf", size=
|
55 |
except IOError:
|
56 |
font = ImageFont.load_default()
|
57 |
|
@@ -63,18 +67,31 @@ def draw_boxes(image: Image.Image, outputs: dict):
|
|
63 |
if score < PROB_THRESHOLD:
|
64 |
continue
|
65 |
label = LABELS[int(cls)]
|
|
|
66 |
# Assuming box format: [ymin, xmin, ymax, xmax] normalized [0,1]
|
67 |
ymin, xmin, ymax, xmax = box
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
73 |
draw.rectangle([left, top, right, bottom], outline="red", width=2)
|
|
|
|
|
74 |
text = f"{label}: {score:.2f}"
|
75 |
-
|
76 |
-
|
77 |
-
draw.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
return image
|
79 |
|
80 |
# Initialize model
|
@@ -107,9 +124,9 @@ iface = gr.Interface(
|
|
107 |
outputs=[gr.Image(type="pil", label="Detected Objects"), gr.Textbox(label="Detections")],
|
108 |
title="Object Detection with ONNX Model",
|
109 |
description="Upload an image to detect objects using the ONNX model.",
|
110 |
-
examples=["examples/card1.jpg", "examples/card2.jpg", "examples/card3.jpg"]
|
|
|
111 |
)
|
112 |
|
113 |
if __name__ == "__main__":
|
114 |
iface.launch()
|
115 |
-
|
|
|
50 |
|
51 |
def draw_boxes(image: Image.Image, outputs: dict):
|
52 |
draw = ImageDraw.Draw(image)
|
53 |
+
|
54 |
+
# Dynamic font size based on image width
|
55 |
+
image_width, image_height = image.size
|
56 |
+
font_size = max(15, image_width // 100) # Adjust as needed
|
57 |
try:
|
58 |
+
font = ImageFont.truetype("arial.ttf", size=font_size)
|
59 |
except IOError:
|
60 |
font = ImageFont.load_default()
|
61 |
|
|
|
67 |
if score < PROB_THRESHOLD:
|
68 |
continue
|
69 |
label = LABELS[int(cls)]
|
70 |
+
|
71 |
# Assuming box format: [ymin, xmin, ymax, xmax] normalized [0,1]
|
72 |
ymin, xmin, ymax, xmax = box
|
73 |
+
left = xmin * image_width
|
74 |
+
right = xmax * image_width
|
75 |
+
top = ymin * image_height
|
76 |
+
bottom = ymax * image_height
|
77 |
+
|
78 |
+
# Draw bounding box
|
79 |
draw.rectangle([left, top, right, bottom], outline="red", width=2)
|
80 |
+
|
81 |
+
# Prepare label text
|
82 |
text = f"{label}: {score:.2f}"
|
83 |
+
|
84 |
+
# Calculate text size using textbbox
|
85 |
+
text_bbox = draw.textbbox((0, 0), text, font=font)
|
86 |
+
text_width = text_bbox[2] - text_bbox[0]
|
87 |
+
text_height = text_bbox[3] - text_bbox[1]
|
88 |
+
|
89 |
+
# Draw rectangle behind text for better visibility
|
90 |
+
draw.rectangle([left, top - text_height - 4, left + text_width + 4, top], fill="red")
|
91 |
+
|
92 |
+
# Draw text
|
93 |
+
draw.text((left + 2, top - text_height - 2), text, fill="white", font=font)
|
94 |
+
|
95 |
return image
|
96 |
|
97 |
# Initialize model
|
|
|
124 |
outputs=[gr.Image(type="pil", label="Detected Objects"), gr.Textbox(label="Detections")],
|
125 |
title="Object Detection with ONNX Model",
|
126 |
description="Upload an image to detect objects using the ONNX model.",
|
127 |
+
examples=["examples/card1.jpg", "examples/card2.jpg", "examples/card3.jpg"],
|
128 |
+
theme="default" # You can choose other themes if desired
|
129 |
)
|
130 |
|
131 |
if __name__ == "__main__":
|
132 |
iface.launch()
|
|
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
gradio==3.32.0
|
2 |
onnx==1.14.0
|
3 |
onnxruntime==1.15.1
|
4 |
-
Pillow
|
5 |
numpy==1.25.0
|
|
|
1 |
gradio==3.32.0
|
2 |
onnx==1.14.0
|
3 |
onnxruntime==1.15.1
|
4 |
+
Pillow>=10.0.0
|
5 |
numpy==1.25.0
|