Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,660 Bytes
123719b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import numpy as np
import roma
import torch
import torch.nn.functional as F
def rt_to_mat4(
R: torch.Tensor, t: torch.Tensor, s: torch.Tensor | None = None
) -> torch.Tensor:
"""
Args:
R (torch.Tensor): (..., 3, 3).
t (torch.Tensor): (..., 3).
s (torch.Tensor): (...,).
Returns:
torch.Tensor: (..., 4, 4)
"""
mat34 = torch.cat([R, t[..., None]], dim=-1)
if s is None:
bottom = (
mat34.new_tensor([[0.0, 0.0, 0.0, 1.0]])
.reshape((1,) * (mat34.dim() - 2) + (1, 4))
.expand(mat34.shape[:-2] + (1, 4))
)
else:
bottom = F.pad(1.0 / s[..., None, None], (3, 0), value=0.0)
mat4 = torch.cat([mat34, bottom], dim=-2)
return mat4
def get_avg_w2c(w2cs: torch.Tensor):
c2ws = torch.linalg.inv(w2cs)
# 1. Compute the center
center = c2ws[:, :3, -1].mean(0)
# 2. Compute the z axis
z = F.normalize(c2ws[:, :3, 2].mean(0), dim=-1)
# 3. Compute axis y' (no need to normalize as it's not the final output)
y_ = c2ws[:, :3, 1].mean(0) # (3)
# 4. Compute the x axis
x = F.normalize(torch.cross(y_, z, dim=-1), dim=-1) # (3)
# 5. Compute the y axis (as z and x are normalized, y is already of norm 1)
y = torch.cross(z, x, dim=-1) # (3)
avg_c2w = rt_to_mat4(torch.stack([x, y, z], 1), center)
avg_w2c = torch.linalg.inv(avg_c2w)
return avg_w2c
# def get_lookat(origins: torch.Tensor, viewdirs: torch.Tensor) -> torch.Tensor:
# """Calculate the intersection point of multiple camera rays as the lookat point.
# Use the center of camera positions as a reference point for the lookat,
# then move forward along the average view direction by a certain distance.
# """
# # Calculate the center of camera positions
# center = origins.mean(dim=0)
# # Calculate average view direction
# mean_dir = F.normalize(viewdirs.mean(dim=0), dim=-1)
# # Calculate average distance to the center point
# avg_dist = torch.norm(origins - center, dim=-1).mean()
# # Move forward along the average view direction
# lookat = center + mean_dir * avg_dist
# return lookat
def get_lookat(origins: torch.Tensor, viewdirs: torch.Tensor) -> torch.Tensor:
"""Triangulate a set of rays to find a single lookat point.
Args:
origins (torch.Tensor): A (N, 3) array of ray origins.
viewdirs (torch.Tensor): A (N, 3) array of ray view directions.
Returns:
torch.Tensor: A (3,) lookat point.
"""
viewdirs = torch.nn.functional.normalize(viewdirs, dim=-1)
eye = torch.eye(3, device=origins.device, dtype=origins.dtype)[None]
# Calculate projection matrix I - rr^T
I_min_cov = eye - (viewdirs[..., None] * viewdirs[..., None, :])
# Compute sum of projections
sum_proj = I_min_cov.matmul(origins[..., None]).sum(dim=-3)
# Solve for the intersection point using least squares
lookat = torch.linalg.lstsq(I_min_cov.sum(dim=-3), sum_proj).solution[..., 0]
# Check NaNs.
assert not torch.any(torch.isnan(lookat))
return lookat
def get_lookat_w2cs(positions: torch.Tensor, lookat: torch.Tensor, up: torch.Tensor):
"""
Args:
positions: (N, 3) tensor of camera positions
lookat: (3,) tensor of lookat point
up: (3,) tensor of up vector
Returns:
w2cs: (N, 3, 3) tensor of world to camera rotation matrices
"""
forward_vectors = F.normalize(lookat - positions, dim=-1)
right_vectors = F.normalize(torch.cross(forward_vectors, up[None], dim=-1), dim=-1)
down_vectors = F.normalize(
torch.cross(forward_vectors, right_vectors, dim=-1), dim=-1
)
Rs = torch.stack([right_vectors, down_vectors, forward_vectors], dim=-1)
w2cs = torch.linalg.inv(rt_to_mat4(Rs, positions))
return w2cs
def get_arc_w2cs(
ref_w2c: torch.Tensor,
lookat: torch.Tensor,
up: torch.Tensor,
num_frames: int,
degree: float,
**_,
) -> torch.Tensor:
ref_position = torch.linalg.inv(ref_w2c)[:3, 3]
thetas = (
torch.sin(
torch.linspace(0.0, torch.pi * 2.0, num_frames + 1, device=ref_w2c.device)[
:-1
]
)
* (degree / 2.0)
/ 180.0
* torch.pi
)
positions = torch.einsum(
"nij,j->ni",
roma.rotvec_to_rotmat(thetas[:, None] * up[None]),
ref_position - lookat,
)
return get_lookat_w2cs(positions, lookat, up)
def get_lemniscate_w2cs(
ref_w2c: torch.Tensor,
lookat: torch.Tensor,
up: torch.Tensor,
num_frames: int,
degree: float,
**_,
) -> torch.Tensor:
ref_c2w = torch.linalg.inv(ref_w2c)
a = torch.linalg.norm(ref_c2w[:3, 3] - lookat) * np.tan(degree / 360 * np.pi)
# Lemniscate curve in camera space. Starting at the origin.
thetas = (
torch.linspace(0, 2 * torch.pi, num_frames + 1, device=ref_w2c.device)[:-1]
+ torch.pi / 2
)
positions = torch.stack(
[
a * torch.cos(thetas) / (1 + torch.sin(thetas) ** 2),
a * torch.cos(thetas) * torch.sin(thetas) / (1 + torch.sin(thetas) ** 2),
torch.zeros(num_frames, device=ref_w2c.device),
],
dim=-1,
)
# Transform to world space.
positions = torch.einsum(
"ij,nj->ni", ref_c2w[:3], F.pad(positions, (0, 1), value=1.0)
)
return get_lookat_w2cs(positions, lookat, up)
def get_spiral_w2cs(
ref_w2c: torch.Tensor,
lookat: torch.Tensor,
up: torch.Tensor,
num_frames: int,
rads: float | torch.Tensor,
zrate: float,
rots: int,
**_,
) -> torch.Tensor:
ref_c2w = torch.linalg.inv(ref_w2c)
thetas = torch.linspace(
0, 2 * torch.pi * rots, num_frames + 1, device=ref_w2c.device
)[:-1]
# Spiral curve in camera space. Starting at the origin.
if isinstance(rads, torch.Tensor):
rads = rads.reshape(-1, 3).to(ref_w2c.device)
positions = (
torch.stack(
[
torch.cos(thetas),
-torch.sin(thetas),
-torch.sin(thetas * zrate),
],
dim=-1,
)
* rads
)
# Transform to world space.
positions = torch.einsum(
"ij,nj->ni", ref_c2w[:3], F.pad(positions, (0, 1), value=1.0)
)
return get_lookat_w2cs(positions, lookat, up)
def get_wander_w2cs(ref_w2c, focal_length, num_frames, max_disp, **_):
device = ref_w2c.device
c2w = np.linalg.inv(ref_w2c.detach().cpu().numpy())
max_disp = max_disp
max_trans = max_disp / focal_length
output_poses = []
for i in range(num_frames):
x_trans = max_trans * np.sin(2.0 * np.pi * float(i) / float(num_frames))
y_trans = 0.0
z_trans = max_trans * np.cos(2.0 * np.pi * float(i) / float(num_frames)) / 2.0
i_pose = np.concatenate(
[
np.concatenate(
[
np.eye(3),
np.array([x_trans, y_trans, z_trans])[:, np.newaxis],
],
axis=1,
),
np.array([0.0, 0.0, 0.0, 1.0])[np.newaxis, :],
],
axis=0,
)
i_pose = np.linalg.inv(i_pose)
ref_pose = np.concatenate(
[c2w[:3, :4], np.array([0.0, 0.0, 0.0, 1.0])[np.newaxis, :]], axis=0
)
render_pose = np.dot(ref_pose, i_pose)
output_poses.append(render_pose)
output_poses = torch.from_numpy(np.array(output_poses, dtype=np.float32)).to(device)
w2cs = torch.linalg.inv(output_poses)
return w2cs |