File size: 9,152 Bytes
123719b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  [email protected]
#

import torch
import torch.nn.functional as F
from torch.autograd import Variable
from math import exp
import einops

def l1_loss(network_output, gt):
    return torch.abs((network_output - gt)).mean()

def l2_loss(network_output, gt):
    return ((network_output - gt) ** 2).mean()

def gaussian(window_size, sigma):
    gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
    return gauss / gauss.sum()

def create_window(window_size, channel):
    _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
    _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
    window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
    return window

def masked_ssim(img1, img2, mask):
    ssim_map = ssim(img1, img2, get_ssim_map=True)
    return (ssim_map * mask).sum() / (3. * mask.sum())


def ssim(img1, img2, window_size=11, size_average=True, get_ssim_map=False):
    channel = img1.size(-3)
    window = create_window(window_size, channel)

    if img1.is_cuda:
        window = window.cuda(img1.get_device())
    window = window.type_as(img1)

    return _ssim(img1, img2, window, window_size, channel, size_average, get_ssim_map)

def _ssim(img1, img2, window, window_size, channel, size_average=True, get_ssim_map=False):
    mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
    mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)

    mu1_sq = mu1.pow(2)
    mu2_sq = mu2.pow(2)
    mu1_mu2 = mu1 * mu2

    sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
    sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
    sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2

    C1 = 0.01 ** 2
    C2 = 0.03 ** 2

    ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))

    if get_ssim_map:
        return ssim_map
    elif size_average:
        return ssim_map.mean()
    else:
        return ssim_map.mean(1).mean(1).mean(1)


# --- Projections ---

def homogenize_points(points):
    """Append a '1' along the final dimension of the tensor (i.e. convert xyz->xyz1)"""
    return torch.cat([points, torch.ones_like(points[..., :1])], dim=-1)


def normalize_homogenous_points(points):
    """Normalize the point vectors"""
    return points / points[..., -1:]


def pixel_space_to_camera_space(pixel_space_points, depth, intrinsics):
    """
    Convert pixel space points to camera space points.

    Args:
        pixel_space_points (torch.Tensor): Pixel space points with shape (h, w, 2)
        depth (torch.Tensor): Depth map with shape (b, v, h, w, 1)
        intrinsics (torch.Tensor): Camera intrinsics with shape (b, v, 3, 3)

    Returns:
        torch.Tensor: Camera space points with shape (b, v, h, w, 3).
    """
    pixel_space_points = homogenize_points(pixel_space_points)
    camera_space_points = torch.einsum('b v i j , h w j -> b v h w i', intrinsics.inverse(), pixel_space_points)
    camera_space_points = camera_space_points * depth
    return camera_space_points


def camera_space_to_world_space(camera_space_points, c2w):
    """
    Convert camera space points to world space points.

    Args:
        camera_space_points (torch.Tensor): Camera space points with shape (b, v, h, w, 3)
        c2w (torch.Tensor): Camera to world extrinsics matrix with shape (b, v, 4, 4)

    Returns:
        torch.Tensor: World space points with shape (b, v, h, w, 3).
    """
    camera_space_points = homogenize_points(camera_space_points)
    world_space_points = torch.einsum('b v i j , b v h w j -> b v h w i', c2w, camera_space_points)
    return world_space_points[..., :3]


def camera_space_to_pixel_space(camera_space_points, intrinsics):
    """
    Convert camera space points to pixel space points.

    Args:
        camera_space_points (torch.Tensor): Camera space points with shape (b, v1, v2, h, w, 3)
        c2w (torch.Tensor): Camera to world extrinsics matrix with shape (b, v2, 3, 3)

    Returns:
        torch.Tensor: World space points with shape (b, v1, v2, h, w, 2).
    """
    camera_space_points = normalize_homogenous_points(camera_space_points)
    pixel_space_points = torch.einsum('b u i j , b v u h w j -> b v u h w i', intrinsics, camera_space_points)
    return pixel_space_points[..., :2]


def world_space_to_camera_space(world_space_points, c2w):
    """
    Convert world space points to pixel space points.

    Args:
        world_space_points (torch.Tensor): World space points with shape (b, v1, h, w, 3)
        c2w (torch.Tensor): Camera to world extrinsics matrix with shape (b, v2, 4, 4)

    Returns:
        torch.Tensor: Camera space points with shape (b, v1, v2, h, w, 3).
    """
    world_space_points = homogenize_points(world_space_points)
    camera_space_points = torch.einsum('b u i j , b v h w j -> b v u h w i', c2w.inverse(), world_space_points)
    return camera_space_points[..., :3]


def unproject_depth(depth, intrinsics, c2w):
    """
    Turn the depth map into a 3D point cloud in world space

    Args:
        depth: (b, v, h, w, 1)
        intrinsics: (b, v, 3, 3)
        c2w: (b, v, 4, 4)

    Returns:
        torch.Tensor: World space points with shape (b, v, h, w, 3).
    """

    # Compute indices of pixels
    h, w = depth.shape[-3], depth.shape[-2]
    x_grid, y_grid = torch.meshgrid(
        torch.arange(w, device=depth.device, dtype=torch.float32),
        torch.arange(h, device=depth.device, dtype=torch.float32),
        indexing='xy'
    )  # (h, w), (h, w)

    # Compute coordinates of pixels in camera space
    pixel_space_points = torch.stack((x_grid, y_grid), dim=-1)  # (..., h, w, 2)
    camera_points = pixel_space_to_camera_space(pixel_space_points, depth, intrinsics)  # (..., h, w, 3)

    # Convert points to world space
    world_points = camera_space_to_world_space(camera_points, c2w)  # (..., h, w, 3)

    return world_points


@torch.no_grad()
def calculate_in_frustum_mask(depth_1, intrinsics_1, c2w_1, depth_2, intrinsics_2, c2w_2, atol=1e-2):
    """
    A function that takes in the depth, intrinsics and c2w matrices of two sets
    of views, and then works out which of the pixels in the first set of views
    has a direct corresponding pixel in any of views in the second set

    Args:
        depth_1: (b, v1, h, w)
        intrinsics_1: (b, v1, 3, 3)
        c2w_1: (b, v1, 4, 4)
        depth_2: (b, v2, h, w)
        intrinsics_2: (b, v2, 3, 3)
        c2w_2: (b, v2, 4, 4)

    Returns:
        torch.Tensor: Camera space points with shape (b, v1, h, w).
    """

    _, v1, h, w = depth_1.shape
    _, v2, _, _ = depth_2.shape

    # Unproject the depth to get the 3D points in world space
    points_3d = unproject_depth(depth_1[..., None], intrinsics_1, c2w_1)  # (b, v1, h, w, 3)

    # Project the 3D points into the pixel space of all the second views simultaneously
    camera_points = world_space_to_camera_space(points_3d, c2w_2)  # (b, v1, v2, h, w, 3)
    points_2d = camera_space_to_pixel_space(camera_points, intrinsics_2)  # (b, v1, v2, h, w, 2)

    # Calculate the depth of each point
    rendered_depth = camera_points[..., 2]  # (b, v1, v2, h, w)

    # We use three conditions to determine if a point should be masked

    # Condition 1: Check if the points are in the frustum of any of the v2 views
    in_frustum_mask = (
        (points_2d[..., 0] > 0) &
        (points_2d[..., 0] < w) &
        (points_2d[..., 1] > 0) &
        (points_2d[..., 1] < h)
    )  # (b, v1, v2, h, w)
    in_frustum_mask = in_frustum_mask.any(dim=-3)  # (b, v1, h, w)

    # Condition 2: Check if the points have non-zero (i.e. valid) depth in the input view
    non_zero_depth = depth_1 > 1e-6

    # Condition 3: Check if the points have matching depth to any of the v2
    # views torch.nn.functional.grid_sample expects the input coordinates to
    # be normalized to the range [-1, 1], so we normalize first
    points_2d[..., 0] /= w
    points_2d[..., 1] /= h
    points_2d = points_2d * 2 - 1
    matching_depth = torch.ones_like(rendered_depth, dtype=torch.bool)
    for b in range(depth_1.shape[0]):
        for i in range(v1):
            for j in range(v2):
                depth = einops.rearrange(depth_2[b, j], 'h w -> 1 1 h w')
                coords = einops.rearrange(points_2d[b, i, j], 'h w c -> 1 h w c')
                sampled_depths = torch.nn.functional.grid_sample(depth, coords, align_corners=False)[0, 0]
                matching_depth[b, i, j] = torch.isclose(rendered_depth[b, i, j], sampled_depths, atol=atol)

    matching_depth = matching_depth.any(dim=-3)  # (..., v1, h, w)

    mask = in_frustum_mask & non_zero_depth & matching_depth
    return mask