Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,566 Bytes
123719b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import torch
import math
import numpy as np
from typing import NamedTuple
import torch.nn.functional as F
from torch import Tensor
class BasicPointCloud(NamedTuple):
points : np.array
colors : np.array
normals : np.array
features: np.array
def geom_transform_points(points, transf_matrix):
P, _ = points.shape
ones = torch.ones(P, 1, dtype=points.dtype, device=points.device)
points_hom = torch.cat([points, ones], dim=1)
points_out = torch.matmul(points_hom, transf_matrix.unsqueeze(0))
denom = points_out[..., 3:] + 0.0000001
return (points_out[..., :3] / denom).squeeze(dim=0)
def getWorld2View(R, t):
Rt = np.zeros((4, 4))
Rt[:3, :3] = R.transpose()
Rt[:3, 3] = t
Rt[3, 3] = 1.0
return np.float32(Rt)
def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0):
Rt = np.zeros((4, 4))
Rt[:3, :3] = R.transpose()
Rt[:3, 3] = t
Rt[3, 3] = 1.0
C2W = np.linalg.inv(Rt)
cam_center = C2W[:3, 3]
cam_center = (cam_center + translate) * scale
C2W[:3, 3] = cam_center
Rt = np.linalg.inv(C2W)
return np.float32(Rt)
def getWorld2View2_torch(R, t, translate=torch.tensor([0.0, 0.0, 0.0]), scale=1.0):
translate = torch.tensor(translate, dtype=torch.float32)
# Initialize the transformation matrix
Rt = torch.zeros((4, 4), dtype=torch.float32)
Rt[:3, :3] = R.t() # Transpose of R
Rt[:3, 3] = t
Rt[3, 3] = 1.0
# Compute the inverse to get the camera-to-world transformation
C2W = torch.linalg.inv(Rt)
cam_center = C2W[:3, 3]
cam_center = (cam_center + translate) * scale
C2W[:3, 3] = cam_center
# Invert again to get the world-to-view transformation
Rt = torch.linalg.inv(C2W)
return Rt
def getProjectionMatrix(znear, zfar, fovX, fovY):
tanHalfFovY = math.tan((fovY / 2))
tanHalfFovX = math.tan((fovX / 2))
top = tanHalfFovY * znear
bottom = -top
right = tanHalfFovX * znear
left = -right
P = torch.zeros(4, 4)
z_sign = 1.0
P[0, 0] = 2.0 * znear / (right - left)
P[1, 1] = 2.0 * znear / (top - bottom)
P[0, 2] = (right + left) / (right - left)
P[1, 2] = (top + bottom) / (top - bottom)
P[3, 2] = z_sign
P[2, 2] = z_sign * zfar / (zfar - znear)
P[2, 3] = -(zfar * znear) / (zfar - znear)
return P
def fov2focal(fov, pixels):
return pixels / (2 * math.tan(fov / 2))
def focal2fov(focal, pixels):
return 2*math.atan(pixels/(2*focal))
def resize_render(view, size=None):
image_size = size if size is not None else max(view.image_width, view.image_height)
view.original_image = torch.zeros((3, image_size, image_size), device=view.original_image.device)
focal_length_x = fov2focal(view.FoVx, view.image_width)
focal_length_y = fov2focal(view.FoVy, view.image_height)
view.image_width = image_size
view.image_height = image_size
view.FoVx = focal2fov(focal_length_x, image_size)
view.FoVy = focal2fov(focal_length_y, image_size)
return view
def make_video_divisble(
video: torch.Tensor | np.ndarray, block_size=16
) -> torch.Tensor | np.ndarray:
H, W = video.shape[1:3]
H_new = H - H % block_size
W_new = W - W % block_size
return video[:, :H_new, :W_new]
def depth_to_points(
depths: Tensor, camtoworlds: Tensor, Ks: Tensor, z_depth: bool = True
) -> Tensor:
"""Convert depth maps to 3D points
Args:
depths: Depth maps [..., H, W, 1]
camtoworlds: Camera-to-world transformation matrices [..., 4, 4]
Ks: Camera intrinsics [..., 3, 3]
z_depth: Whether the depth is in z-depth (True) or ray depth (False)
Returns:
points: 3D points in the world coordinate system [..., H, W, 3]
"""
assert depths.shape[-1] == 1, f"Invalid depth shape: {depths.shape}"
assert camtoworlds.shape[-2:] == (
4,
4,
), f"Invalid viewmats shape: {camtoworlds.shape}"
assert Ks.shape[-2:] == (3, 3), f"Invalid Ks shape: {Ks.shape}"
assert (
depths.shape[:-3] == camtoworlds.shape[:-2] == Ks.shape[:-2]
), f"Shape mismatch! depths: {depths.shape}, viewmats: {camtoworlds.shape}, Ks: {Ks.shape}"
device = depths.device
height, width = depths.shape[-3:-1]
x, y = torch.meshgrid(
torch.arange(width, device=device),
torch.arange(height, device=device),
indexing="xy",
) # [H, W]
fx = Ks[..., 0, 0] # [...]
fy = Ks[..., 1, 1] # [...]
cx = Ks[..., 0, 2] # [...]
cy = Ks[..., 1, 2] # [...]
# camera directions in camera coordinates
camera_dirs = F.pad(
torch.stack(
[
(x - cx[..., None, None] + 0.5) / fx[..., None, None],
(y - cy[..., None, None] + 0.5) / fy[..., None, None],
],
dim=-1,
),
(0, 1),
value=1.0,
) # [..., H, W, 3]
# ray directions in world coordinates
directions = torch.einsum(
"...ij,...hwj->...hwi", camtoworlds[..., :3, :3], camera_dirs
) # [..., H, W, 3]
origins = camtoworlds[..., :3, -1] # [..., 3]
if not z_depth:
directions = F.normalize(directions, dim=-1)
points = origins[..., None, None, :] + depths * directions
return points
def depth_to_normal(
depths: Tensor, camtoworlds: Tensor, Ks: Tensor, z_depth: bool = True
) -> Tensor:
"""Convert depth maps to surface normals
Args:
depths: Depth maps [..., H, W, 1]
camtoworlds: Camera-to-world transformation matrices [..., 4, 4]
Ks: Camera intrinsics [..., 3, 3]
z_depth: Whether the depth is in z-depth (True) or ray depth (False)
Returns:
normals: Surface normals in the world coordinate system [..., H, W, 3]
"""
points = depth_to_points(depths, camtoworlds, Ks, z_depth=z_depth) # [..., H, W, 3]
dx = torch.cat(
[points[..., 2:, 1:-1, :] - points[..., :-2, 1:-1, :]], dim=-3
) # [..., H-2, W-2, 3]
dy = torch.cat(
[points[..., 1:-1, 2:, :] - points[..., 1:-1, :-2, :]], dim=-2
) # [..., H-2, W-2, 3]
normals = F.normalize(torch.cross(dx, dy, dim=-1), dim=-1) # [..., H-2, W-2, 3]
normals = F.pad(normals, (0, 0, 1, 1, 1, 1), value=0.0) # [..., H, W, 3]
return normals |