Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,729 Bytes
123719b 6655f5e 123719b 6655f5e 123719b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
from argparse import ArgumentParser, Namespace
import sys
import os
class GroupParams:
pass
class ParamGroup:
def __init__(self, parser: ArgumentParser, name : str, fill_none = False):
group = parser.add_argument_group(name)
for key, value in vars(self).items():
shorthand = False
if key.startswith("_"):
shorthand = True
key = key[1:]
t = type(value)
value = value if not fill_none else None
if shorthand:
if t == bool:
group.add_argument("--" + key, ("-" + key[0:1]), default=value, action="store_true")
else:
group.add_argument("--" + key, ("-" + key[0:1]), default=value, type=t)
else:
if t == bool:
group.add_argument("--" + key, default=value, action="store_true")
else:
group.add_argument("--" + key, default=value, type=t)
def extract(self, args):
group = GroupParams()
for arg in vars(args).items():
if arg[0] in vars(self) or ("_" + arg[0]) in vars(self):
setattr(group, arg[0], arg[1])
return group
class ModelParams(ParamGroup):
def __init__(self, parser, sentinel=False):
self.sh_degree = 0
self._source_path = ""
self._model_path = ""
self._images = "images"
self._resolution = -1
self._white_background = False
self.data_device = "cuda"
self.eval = False
self.feat_default_dim = {
'iuv': 3,
'iuvrgb': 6,
'mast3r': 1024,
'dust3r': 1024,
'dift': 1280,
'dino_b16': 768,
'dinov2_b14': 768,
'radio': 1280,
'clip_b16': 512,
'mae_b16': 768,
'midas_l16': 1024,
'sam_base': 768,
# 'dino16': 384,
# 'dinov2': 384,
# 'clip': 512,
# 'maskclip': 512,
# 'vit': 384,
# 'resnet50': 2048,
# 'midas': 768,
# 'mae': 1024,
}
self.gs_params_group = {
'G':{
'head': ['xyz', 'scaling', 'rotation', 'opacity'],
'opt':['f_dc', 'f_rest']
},
'T':{
'head': ['f_dc', 'f_rest'],
'opt':['xyz', 'scaling', 'rotation', 'opacity']
},
'A':{
'head': ['xyz', 'scaling', 'rotation', 'opacity', 'f_dc', 'f_rest'],
'opt':[]
},
'Gft':{
'head': ['xyz', 'scaling', 'rotation', 'opacity'],
'opt':['f_dc', 'pc_feat'] #, 'f_rest' delete for vis
},
'Tft':{
'head': ['f_dc', 'f_rest'],
'opt':['xyz', 'scaling', 'rotation', 'opacity', 'pc_feat']
},
'Aft':{
'head': ['xyz', 'scaling', 'rotation', 'opacity', 'f_dc', 'f_rest'],
'opt':['pc_feat']
},
}
super().__init__(parser, "Loading Parameters", sentinel)
def extract(self, args):
g = super().extract(args)
g.source_path = os.path.abspath(g.source_path)
return g
class PipelineParams(ParamGroup):
def __init__(self, parser):
self.convert_SHs_python = False
self.compute_cov3D_python = False
self.debug = False
super().__init__(parser, "Pipeline Parameters")
class DefualtOptimizationParams(ParamGroup):
def __init__(self, parser):
self.lr_multiplier = 1.
self.iterations = 30_000
self.position_lr_init = 0.00016 * self.lr_multiplier
self.position_lr_final = 0.0000016 * self.lr_multiplier
self.position_lr_delay_mult = 0.01
self.position_lr_max_steps = 30_000
self.feature_lr = 0.0025 * self.lr_multiplier
self.opacity_lr = 0.05 * self.lr_multiplier
self.scaling_lr = 0.005 * self.lr_multiplier
self.rotation_lr = 0.001 * self.lr_multiplier
self.percent_dense = 0.01
self.lambda_dssim = 0.2
self.densification_interval = 100
self.opacity_reset_interval = 3000
self.densify_from_iter = 500
self.densify_until_iter = 15_000
self.densify_grad_threshold = 0.0002
self.random_background = False
super().__init__(parser, "Optimization Parameters")
class OptimizationParams(ParamGroup):
def __init__(self, parser):
self.lr_multiplier = 0.1
self.iterations = 30_000
self.pose_lr_init = 0.0001 #0.0001
self.pose_lr_final = 0.000001 #0.0001
self.position_lr_init = 0.00016 * self.lr_multiplier #0.000001
self.position_lr_final = 0.0000016 * self.lr_multiplier #0.000001
self.position_lr_delay_mult = 0.01
self.position_lr_max_steps = 30_000
self.feature_lr = 0.0025 * self.lr_multiplier #0.001
self.feature_sh_lr = (0.0025/20.) * self.lr_multiplier #0.000001
self.opacity_lr = 0.05 * self.lr_multiplier #0.0001
self.scaling_lr = 0.005 * self.lr_multiplier # 0.001
self.rotation_lr = 0.001 * self.lr_multiplier # 0.00001
self.percent_dense = 0.01
self.lambda_dssim = 0.2
self.densification_interval = 100
self.opacity_reset_interval = 3000
# self.densify_from_iter = 500
# self.densify_until_iter = 15_000
# self.densify_grad_threshold = 0.0002
self.random_background = False
super().__init__(parser, "Optimization Parameters")
def get_combined_args(parser : ArgumentParser):
cmdlne_string = sys.argv[1:]
cfgfile_string = "Namespace()"
args_cmdline = parser.parse_args(cmdlne_string)
try:
cfgfilepath = os.path.join(args_cmdline.model_path, "cfg_args")
print("Looking for config file in", cfgfilepath)
with open(cfgfilepath) as cfg_file:
print("Config file found: {}".format(cfgfilepath))
cfgfile_string = cfg_file.read()
except TypeError:
print("Config file not found at")
pass
args_cfgfile = eval(cfgfile_string)
merged_dict = vars(args_cfgfile).copy()
for k,v in vars(args_cmdline).items():
if v != None:
merged_dict[k] = v
return Namespace(**merged_dict)
|