Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,248 Bytes
98198a3 6858162 252c586 6858162 d89af41 12822cb d89af41 f332442 d89af41 a3c6fb1 d89af41 72e9aca a3c6fb1 b100032 d89af41 e4f3fd3 d89af41 72e9aca a3c6fb1 d89af41 72e9aca cdfed4c d89af41 cdfed4c d89af41 cdfed4c d89af41 cdfed4c d89af41 ef9846f d89af41 8aa62d9 d89af41 67776dd d89af41 12d705c d89af41 1c3d749 d89af41 ef9846f d89af41 85daf75 ebdc008 1c3d749 ebdc008 85daf75 d89af41 b100032 d89af41 85daf75 d89af41 ebdc008 d89af41 ebdc008 d89af41 8aa62d9 d89af41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import os, subprocess, shlex, sys, gc
from gradio_client import Client
# client = Client("endless-ai/SDXL", hf_token=os.getenv("HF_TOKEN"))
import time
import torch
import numpy as np
import shutil
import argparse
import gradio as gr
import uuid
import spaces
subprocess.run(shlex.split("pip install wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/simple_knn-0.0.0-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/curope-0.0.0-cp310-cp310-linux_x86_64.whl"))
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
os.sys.path.append(os.path.abspath(os.path.join(BASE_DIR, "submodules", "mast3r")))
os.sys.path.append(os.path.abspath(os.path.join(BASE_DIR, "submodules", "mast3r", "dust3r")))
# os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
from dust3r.inference import inference
from dust3r.model import AsymmetricCroCo3DStereo
from dust3r.utils.device import to_numpy
from dust3r.image_pairs import make_pairs
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
from utils.dust3r_utils import compute_global_alignment, load_images, storePly, save_colmap_cameras, save_colmap_images
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, OptimizationParams
from train_feat2gs import training
from run_video import render_sets
GRADIO_CACHE_FOLDER = './gradio_cache_folder'
from utils.feat_utils import FeatureExtractor
from dust3r.demo import _convert_scene_output_to_glb
#############################################################################################################################################
def get_dust3r_args_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--image_size", type=int, default=512, choices=[512, 224], help="image size")
parser.add_argument("--model_path", type=str, default="naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt", help="path to the model weights")
parser.add_argument("--device", type=str, default='cuda', help="pytorch device")
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--schedule", type=str, default='linear')
parser.add_argument("--lr", type=float, default=0.01)
parser.add_argument("--niter", type=int, default=300)
parser.add_argument("--focal_avg", type=bool, default=True)
parser.add_argument("--n_views", type=int, default=3)
parser.add_argument("--base_path", type=str, default=GRADIO_CACHE_FOLDER)
parser.add_argument("--feat_dim", type=int, default=256, help="PCA dimension. If None, PCA is not applied, and the original feature dimension is retained.")
parser.add_argument("--feat_type", type=str, nargs='*', default=["dust3r",], help="Feature type(s). Multiple types can be specified for combination.")
parser.add_argument("--vis_feat", action="store_true", default=True, help="Visualize features")
parser.add_argument("--vis_key", type=str, default=None, help="Feature type to visualize (only for mast3r), e.g., 'decfeat' or 'desc'")
parser.add_argument("--method", type=str, default='dust3r', help="Method of Initialization, e.g., 'dust3r' or 'mast3r'")
return parser
@spaces.GPU(duration=300)
def run_dust3r(inputfiles, input_path=None):
if input_path is not None:
imgs_path = './assets/example/' + input_path
imgs_names = sorted(os.listdir(imgs_path))
inputfiles = []
for imgs_name in imgs_names:
file_path = os.path.join(imgs_path, imgs_name)
print(file_path)
inputfiles.append(file_path)
print(inputfiles)
# ------ Step(1) DUSt3R initialization & Feature extraction ------
# os.system(f"rm -rf {GRADIO_CACHE_FOLDER}")
parser = get_dust3r_args_parser()
opt = parser.parse_args()
method = opt.method
tmp_user_folder = str(uuid.uuid4()).replace("-", "")
opt.img_base_path = os.path.join(opt.base_path, tmp_user_folder)
img_folder_path = os.path.join(opt.img_base_path, "images")
model = AsymmetricCroCo3DStereo.from_pretrained(opt.model_path).to(opt.device)
os.makedirs(img_folder_path, exist_ok=True)
opt.n_views = len(inputfiles)
if opt.n_views == 1:
raise gr.Error("The number of input images should be greater than 1.")
print("Multiple images: ", inputfiles)
# for image_file in inputfiles:
# image_path = image_file.name if hasattr(image_file, 'name') else image_file
# shutil.copy(image_path, img_folder_path)
for image_path in inputfiles:
if input_path is not None:
shutil.copy(image_path, img_folder_path)
else:
shutil.move(image_path, img_folder_path)
train_img_list = sorted(os.listdir(img_folder_path))
assert len(train_img_list)==opt.n_views, f"Number of images in the folder is not equal to {opt.n_views}"
images, ori_size = load_images(img_folder_path, size=512)
# images, ori_size, imgs_resolution = load_images(img_folder_path, size=512)
# resolutions_are_equal = len(set(imgs_resolution)) == 1
# if resolutions_are_equal == False:
# raise gr.Error("The resolution of the input image should be the same.")
print("ori_size", ori_size)
start_time = time.time()
######################################################
pairs = make_pairs(images, scene_graph='complete', prefilter=None, symmetrize=True)
output = inference(pairs, model, opt.device, batch_size=opt.batch_size)
scene = global_aligner(output, device=opt.device, mode=GlobalAlignerMode.PointCloudOptimizer)
loss = compute_global_alignment(scene=scene, init="mst", niter=opt.niter, schedule=opt.schedule, lr=opt.lr, focal_avg=opt.focal_avg)
scene = scene.clean_pointcloud()
imgs = to_numpy(scene.imgs)
focals = scene.get_focals()
poses = to_numpy(scene.get_im_poses())
pts3d = to_numpy(scene.get_pts3d())
scene.min_conf_thr = float(scene.conf_trf(torch.tensor(1.0)))
confidence_masks = to_numpy(scene.get_masks())
intrinsics = to_numpy(scene.get_intrinsics())
######################################################
end_time = time.time()
print(f"Time taken for {opt.n_views} views: {end_time-start_time} seconds")
output_colmap_path=img_folder_path.replace("images", f"sparse/0/{method}")
# Feature extraction for per point(per pixel)
extractor = FeatureExtractor(images, opt, method)
feats = extractor(scene=scene)
feat_type_str = '-'.join(extractor.feat_type)
output_colmap_path = os.path.join(output_colmap_path, feat_type_str)
os.makedirs(output_colmap_path, exist_ok=True)
outfile = _convert_scene_output_to_glb(output_colmap_path, imgs, pts3d, confidence_masks, focals, poses, as_pointcloud=True, cam_size=0.03)
feat_image_path = os.path.join(opt.img_base_path, "feat_dim0-9_dust3r.png")
save_colmap_cameras(ori_size, intrinsics, os.path.join(output_colmap_path, 'cameras.txt'))
save_colmap_images(poses, os.path.join(output_colmap_path, 'images.txt'), train_img_list)
pts_4_3dgs = np.concatenate([p[m] for p, m in zip(pts3d, confidence_masks)])
color_4_3dgs = np.concatenate([p[m] for p, m in zip(imgs, confidence_masks)])
color_4_3dgs = (color_4_3dgs * 255.0).astype(np.uint8)
feat_4_3dgs = np.concatenate([p[m] for p, m in zip(feats, confidence_masks)])
storePly(os.path.join(output_colmap_path, f"points3D.ply"), pts_4_3dgs, color_4_3dgs, feat_4_3dgs)
del scene
torch.cuda.empty_cache()
gc.collect()
return outfile, feat_image_path, opt, None, None
run_dust3r.zerogpu = True
@spaces.GPU(duration=300)
def run_feat2gs(opt, niter=2000):
if opt is None:
raise gr.Error("Please run Step 1 first!")
try:
if not os.path.exists(opt.img_base_path):
raise ValueError(f"Input path does not exist: {opt.img_base_path}")
if not os.path.exists(os.path.join(opt.img_base_path, "images")):
raise ValueError("Input images not found. Please run Step 1 first")
if not os.path.exists(os.path.join(opt.img_base_path, f"sparse/0/{opt.method}")):
raise ValueError("DUSt3R output not found. Please run Step 1 first")
# ------ Step(2) Readout 3DGS from features & Jointly optimize pose ------
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[])
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--scene", type=str, default="demo")
parser.add_argument("--n_views", type=int, default=3)
parser.add_argument("--get_video", action="store_true")
parser.add_argument("--optim_pose", type=bool, default=True)
parser.add_argument("--feat_type", type=str, nargs='*', default=["dust3r",], help="Feature type(s). Multiple types can be specified for combination.")
parser.add_argument("--method", type=str, default='dust3r', help="Method of Initialization, e.g., 'dust3r' or 'mast3r'")
parser.add_argument("--feat_dim", type=int, default=256, help="Feture dimension after PCA . If None, PCA is not applied.")
parser.add_argument("--model", type=str, default='Gft', help="Model of Feat2gs, 'G'='geometry'/'T'='texture'/'A'='all'")
parser.add_argument("--dataset", default="demo", type=str)
parser.add_argument("--resize", action="store_true", default=False,
help="If True, resize rendering to square")
args = parser.parse_args(sys.argv[1:])
args.iterations = niter
args.save_iterations.append(args.iterations)
args.model_path = opt.img_base_path + '/output/'
args.source_path = opt.img_base_path
# args.model_path = GRADIO_CACHE_FOLDER + '/output/'
# args.source_path = GRADIO_CACHE_FOLDER
args.iteration = niter
os.makedirs(args.model_path, exist_ok=True)
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args)
output_ply_path = opt.img_base_path + f'/output/point_cloud/iteration_{args.iteration}/point_cloud.ply'
# output_ply_path = GRADIO_CACHE_FOLDER+ f'/output/point_cloud/iteration_{args.iteration}/point_cloud.ply'
torch.cuda.empty_cache()
gc.collect()
return output_ply_path, args, None
except Exception as e:
raise gr.Error(f"Step 2 failed: {str(e)}")
run_feat2gs.zerogpu = True
@spaces.GPU(duration=300)
def run_render(opt, args, cam_traj='ellipse'):
if opt is None or args is None:
raise gr.Error("Please run Steps 1 and 2 first!")
try:
iteration_path = os.path.join(opt.img_base_path, f"output/point_cloud/iteration_{args.iteration}/point_cloud.ply")
if not os.path.exists(iteration_path):
raise ValueError("Training results not found. Please run Step 2 first")
# ------ Step(3) Render video with camera trajectory ------
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
args.eval = True
args.get_video = True
args.n_views = opt.n_views
args.cam_traj = cam_traj
render_sets(
model.extract(args),
args.iteration,
pipeline.extract(args),
args,
)
output_video_path = opt.img_base_path + f'/output/videos/demo_{opt.n_views}_view_{args.cam_traj}.mp4'
torch.cuda.empty_cache()
gc.collect()
return output_video_path
except Exception as e:
raise gr.Error(f"Step 3 failed: {str(e)}")
run_render.zerogpu = True
# @spaces.GPU(duration=1000)
# def process_example(inputfiles, input_path):
# dust3r_model, feat_image, dust3r_state, _, _ = run_dust3r(inputfiles, input_path=input_path)
# output_model, feat2gs_state, _ = run_feat2gs(dust3r_state, niter=2000)
# output_video = run_render(dust3r_state, feat2gs_state, cam_traj='interpolated')
# return dust3r_model, feat_image, output_model, output_video
def reset_dust3r_state():
return None, None, None, None, None
def reset_feat2gs_state():
return None, None, None
_TITLE = '''Feat2GS Demo'''
_DESCRIPTION = '''
<div style="display: flex; justify-content: center; align-items: center;">
<div style="width: 100%; text-align: center; font-size: 30px;">
<strong><span style="font-family: 'Comic Sans MS';"><span style="color: #E0933F">Feat</span><span style="color: #B24C33">2</span><span style="color: #E0933F">GS</span></span>: Probing Visual Foundation Models with Gaussian Splatting</strong>
</div>
</div>
<p></p>
<div align="center">
<a style="display:inline-block" href="https://fanegg.github.io/Feat2GS/"><img src='https://img.shields.io/badge/Project-Website-green.svg'></a>
<a style="display:inline-block" href="https://arxiv.org/abs/2412.09606"><img src="https://img.shields.io/badge/Arxiv-2412.09606-b31b1b.svg?logo=arXiv" alt='arxiv'></a>
<a style="display:inline-block" href="https://youtu.be/4fT5lzcAJqo?si=_fCSIuXNBSmov2VA"><img src='https://img.shields.io/badge/Video-E33122?logo=Youtube'></a>
<a style="display:inline-block" href="https://github.com/fanegg/Feat2GS"><img src="https://img.shields.io/badge/Code-black?logo=Github" alt='Code'></a>
<a title="X" href="https://twitter.com/faneggchen" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/@Yue%20Chen-black?logo=X" alt="X">
</a>
<a title="Bluesky" href="https://bsky.app/profile/fanegg.bsky.social" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/@Yue%20Chen-white?logo=Bluesky" alt="Bluesky">
</a>
</div>
<p></p>
'''
_CITE_ = r"""
## 📝 **Citation**
If you find our work useful for your research or applications, please consider citing the following paper:
```bibtex
@article{chen2024feat2gs,
title={Feat2GS: Probing Visual Foundation Models with Gaussian Splatting},
author={Chen, Yue and Chen, Xingyu and Chen, Anpei and Pons-Moll, Gerard and Xiu, Yuliang},
journal={arXiv preprint arXiv:2412.09606},
year={2024}
}
```
"""
# demo = gr.Blocks(title=_TITLE).queue()
demo = gr.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="Feat2GS Demo", theme=gr.themes.Monochrome()).queue()
with demo:
dust3r_state = gr.State(None)
feat2gs_state = gr.State(None)
render_state = gr.State(None)
with gr.Row():
with gr.Column(scale=1):
with gr.Accordion("🚀 Quickstart", open=False):
gr.Markdown("""
1. **Input Images**
* Upload 2 or more images of the same scene from different views
* For best results, ensure images have good overlap
2. **Step 1: DUSt3R Initialization & Feature Extraction**
* Click "RUN Step 1" to process your images
* This step estimates initial DUSt3R point cloud and camera poses, and extracts DUSt3R features for each pixel
3. **Step 2: Readout 3DGS from Features**
* Set the number of training iterations, larger number leads to better quality but longer time (default: 2000, max: 8000)
* Click "RUN Step 2" to optimize the 3D model
4. **Step 3: Video Rendering**
* Choose a camera trajectory
* Click "RUN Step 3" to generate a video of your 3D model
""")
with gr.Accordion("💡 Tips", open=False):
gr.Markdown("""
* Processing time depends on image resolution (**recommended <1K**) and quantity (**recommended 2-6 views**)
* For optimal performance, test on high-end GPUs (A100/4090)
* Use the mouse to interact with 3D models:
- Left-click: Rotate
- Scroll: Zoom
- Right-click: Move
""")
with gr.Row():
with gr.Column(scale=1):
# gr.Markdown('# ' + _TITLE)
gr.HTML(_DESCRIPTION)
with gr.Row(variant='panel'):
with gr.Tab("Input"):
inputfiles = gr.File(file_count="multiple", label="images")
input_path = gr.Textbox(visible=False, label="example_path")
# button_gen = gr.Button("RUN")
with gr.Row(variant='panel'):
with gr.Tab("Step 1: DUSt3R initialization & Feature extraction"):
dust3r_run = gr.Button("RUN Step 1")
with gr.Column(scale=2):
with gr.Group():
dust3r_model = gr.Model3D(
label="DUSt3R Output",
interactive=False,
# camera_position=[0.5, 0.5, 1],
)
gr.Markdown(
"""
<div class="model-description">
Left-click to rotate, Scroll to zoom, and Right-click to move.
</div>
"""
)
feat_image = gr.Image(
label="Feature Visualization",
type="filepath"
)
with gr.Row(variant='panel'):
with gr.Tab("Step 2: Readout 3DGS from features & Jointly optimize pose"):
niter = gr.Number(value=2000, precision=0, minimum=2000, maximum=8000, label="Training iterations")
feat2gs_run = gr.Button("RUN Step 2")
with gr.Column(scale=1):
with gr.Group():
output_model = gr.Model3D(
label="3D Gaussian Splats Output, need more time to visualize",
interactive=False,
# camera_position=[0.5, 0.5, 1],
)
gr.Markdown(
"""
<div class="model-description">
Failed to visualize or got a GPU runtime error? <a href="https://github.com/fanegg/Feat2GS" target="_blank">Run the demo on your local computer!</a>
</div>
"""
)
with gr.Row(variant='panel'):
with gr.Tab("Step 3: Render video with camera trajectory"):
cam_traj = gr.Dropdown(["arc", "spiral", "lemniscate", "wander", "ellipse", "interpolated"], value='ellipse', label="Camera trajectory")
render_run = gr.Button("RUN Step 3")
with gr.Column(scale=1):
output_video = gr.Video(label="video", height=800)
dust3r_run.click(
fn=reset_dust3r_state,
inputs=None,
outputs=[dust3r_model, feat_image, dust3r_state, feat2gs_state, render_state],
queue=False
).then(
fn=run_dust3r,
inputs=[inputfiles],
outputs=[dust3r_model, feat_image, dust3r_state, feat2gs_state, render_state]
)
feat2gs_run.click(
fn=reset_feat2gs_state,
inputs=None,
outputs=[output_model, feat2gs_state, render_state],
queue=False
).then(
fn=run_feat2gs,
inputs=[dust3r_state, niter],
outputs=[output_model, feat2gs_state, render_state]
)
render_run.click(run_render, inputs=[dust3r_state, feat2gs_state, cam_traj], outputs=[output_video])
gr.Markdown(_CITE_)
demo.launch(server_name="0.0.0.0", share=False) |