File size: 3,891 Bytes
9b5b26a
 
 
 
c19d193
6aae614
8fe992b
9b5b26a
01cc349
9b5b26a
5df72d6
9b5b26a
3d1237b
34d55ef
9b5b26a
ba9ae63
34d55ef
9b5b26a
ba9ae63
34d55ef
ba9ae63
 
 
 
34d55ef
 
 
 
ba9ae63
34d55ef
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
807aa82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
6aae614
ae7a494
 
 
3aac14e
ae7a494
e121372
bf6d34c
 
3aac14e
fe328e0
13d500a
8c01ffb
 
9b5b26a
01cc349
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
ba9ae63
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI
import os

# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
    """A tool that generates text based on the provided arguments.
    Args:
        arg1: A string input to guide the generation.
        arg2: An integer input to specify the type of generation (1 for detailed description, 2 for summary).
    """
    if arg2 == 1:
        # Generate detailed description using LLM
        prompt = f"Generate a detailed description based on the following input: {arg1}"
        response = model.generate(prompt)
        return response['choices'][0]['text']
    elif arg2 == 2:
        # Generate summary using LLM
        prompt = f"Generate a summary based on the following input: {arg1}"
        response = model.generate(prompt)
        return response['choices'][0]['text']
    else:
        return "Invalid argument for arg2. Use 1 for detailed description and 2 for summary."

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"

@tool
def get_weather(city: str) -> str:
    """A tool that fetches the current weather for a specified city.
    Args:
        city: The name of the city to get the weather for.
    """
    api_key = "c46c960cf2d8dd517715b8ff14818d7e"  # Replace with your actual OpenWeather API key
    url = f"http://api.openweathermap.org/data/2.5/weather?q={city}&appid={api_key}&units=metric"
    
    try:
        response = requests.get(url)
        data = response.json()
        
        if response.status_code == 200:
            weather_description = data['weather'][0]['description']
            temperature = data['main']['temp']
            return f"The current weather in {city} is {weather_description} with a temperature of {temperature}°C."
        else:
            return f"Error fetching weather for city '{city}': {data['message']}"
    except Exception as e:
        return f"Error fetching weather for city '{city}': {str(e)}"        


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 
# model_id='Qwen/Qwen2.5-Coder-32B-Instruct'

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True, use_auth_token=os.getenv("HF_TOKEN"))

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer, get_weather, my_custom_tool], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()