my-code-agent / app.py
emre
Add application file
ae5870d
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel
from huggingface_hub import login
# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
HF_TOKEN = os.environ.get("HF_TOKEN", "") # Hugging Face token
# Login if token is provided
if HF_TOKEN:
login(token=HF_TOKEN)
class GAIACodeAgent:
def __init__(self):
"""Initialize the advanced agent with tools and capabilities"""
model = InferenceClientModel()
self.agent = CodeAgent(
tools=[DuckDuckGoSearchTool()],
model=model
)
def __call__(self, question: str) -> str:
"""Process a question and return an answer"""
try:
print(f"Agent received question: {question[:50]}...")
# Improve the prompt to get better accuracy on exact match questions
enriched_prompt = (
f"Answer the following question accurately and concisely. "
f"Provide a straightforward answer without unnecessary elaboration. "
f"The answer will be evaluated for exact match accuracy.\n\n"
f"Question: {question}\n\n"
f"Answer: "
)
# Run the agent with the enriched prompt
response = self.agent.run(enriched_prompt)
# Clean up response to improve exact match chances
cleaned_response = response.strip()
print(f"Agent returning answer: {cleaned_response[:50]}...")
return cleaned_response
except Exception as e:
error_msg = f"Error: {str(e)}"
print(error_msg)
return error_msg
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the GAIACodeAgent on them, submits all answers,
and displays the results.
"""
# Determine HF Space Runtime URL and Repo URL
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = GAIACodeAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code URL: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
def query_single_agent(question):
"""Run agent on a single question for testing"""
try:
agent = GAIACodeAgent()
response = agent(question)
return response
except Exception as e:
return f"Error: {str(e)}"
# Build Gradio Interface
with gr.Blocks(title="GAIA Code Agent Evaluation") as demo:
gr.Markdown("# GAIA Code Agent Evaluation")
gr.Markdown(
"""
This application helps you evaluate a code agent on the GAIA benchmark.
## Instructions:
1. Log in to your Hugging Face account using the button below
2. You can test the agent with a single question in the "Test Agent" tab
3. Use the "Run Evaluation" tab to run the agent on all GAIA questions and submit answers
"""
)
with gr.Tab("Test Agent"):
question_input = gr.Textbox(
label="Enter a question",
placeholder="How many seconds would it take for a leopard at full speed to run through Pont des Arts?"
)
query_button = gr.Button("Get Answer")
response_output = gr.Textbox(label="Agent Response", lines=10)
query_button.click(query_single_agent, inputs=question_input, outputs=response_output)
with gr.Tab("Run Evaluation"):
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
# Start the app
if __name__ == "__main__":
demo.launch()