|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import random |
|
import shutil |
|
import time |
|
from glob import glob |
|
from pathlib import Path |
|
|
|
import gradio as gr |
|
import torch |
|
import trimesh |
|
import uvicorn |
|
from fastapi import FastAPI |
|
from fastapi.staticfiles import StaticFiles |
|
import uuid |
|
|
|
from hy3dgen.shapegen.utils import logger |
|
|
|
MAX_SEED = int(1e7) |
|
|
|
|
|
def get_example_img_list(): |
|
print('Loading example img list ...') |
|
return sorted(glob('./assets/example_images/**/*.png', recursive=True)) |
|
|
|
|
|
def get_example_txt_list(): |
|
print('Loading example txt list ...') |
|
txt_list = list() |
|
for line in open('./assets/example_prompts.txt', encoding='utf-8'): |
|
txt_list.append(line.strip()) |
|
return txt_list |
|
|
|
|
|
def get_example_mv_list(): |
|
print('Loading example mv list ...') |
|
mv_list = list() |
|
root = './assets/example_mv_images' |
|
for mv_dir in os.listdir(root): |
|
view_list = [] |
|
for view in ['front', 'back', 'left', 'right']: |
|
path = os.path.join(root, mv_dir, f'{view}.png') |
|
if os.path.exists(path): |
|
view_list.append(path) |
|
else: |
|
view_list.append(None) |
|
mv_list.append(view_list) |
|
return mv_list |
|
|
|
|
|
def gen_save_folder(max_size=200): |
|
os.makedirs(SAVE_DIR, exist_ok=True) |
|
|
|
|
|
dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()] |
|
|
|
|
|
if len(dirs) >= max_size: |
|
|
|
oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime) |
|
shutil.rmtree(oldest_dir) |
|
print(f"Removed the oldest folder: {oldest_dir}") |
|
|
|
|
|
new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4())) |
|
os.makedirs(new_folder, exist_ok=True) |
|
print(f"Created new folder: {new_folder}") |
|
|
|
return new_folder |
|
|
|
|
|
def export_mesh(mesh, save_folder, textured=False, type='glb'): |
|
if textured: |
|
path = os.path.join(save_folder, f'textured_mesh.{type}') |
|
else: |
|
path = os.path.join(save_folder, f'white_mesh.{type}') |
|
if type not in ['glb', 'obj']: |
|
mesh.export(path) |
|
else: |
|
mesh.export(path, include_normals=textured) |
|
return path |
|
|
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
|
|
def build_model_viewer_html(save_folder, height=660, width=790, textured=False): |
|
|
|
if textured: |
|
related_path = f"./textured_mesh.glb" |
|
template_name = './assets/modelviewer-textured-template.html' |
|
output_html_path = os.path.join(save_folder, f'textured_mesh.html') |
|
else: |
|
related_path = f"./white_mesh.glb" |
|
template_name = './assets/modelviewer-template.html' |
|
output_html_path = os.path.join(save_folder, f'white_mesh.html') |
|
offset = 50 if textured else 10 |
|
with open(os.path.join(CURRENT_DIR, template_name), 'r', encoding='utf-8') as f: |
|
template_html = f.read() |
|
|
|
with open(output_html_path, 'w', encoding='utf-8') as f: |
|
template_html = template_html.replace('#height#', f'{height - offset}') |
|
template_html = template_html.replace('#width#', f'{width}') |
|
template_html = template_html.replace('#src#', f'{related_path}/') |
|
f.write(template_html) |
|
|
|
rel_path = os.path.relpath(output_html_path, SAVE_DIR) |
|
iframe_tag = f'<iframe src="/static/{rel_path}" height="{height}" width="100%" frameborder="0"></iframe>' |
|
print( |
|
f'Find html file {output_html_path}, {os.path.exists(output_html_path)}, relative HTML path is /static/{rel_path}') |
|
|
|
return f""" |
|
<div style='height: {height}; width: 100%;'> |
|
{iframe_tag} |
|
</div> |
|
""" |
|
|
|
|
|
def _gen_shape( |
|
caption=None, |
|
image=None, |
|
mv_image_front=None, |
|
mv_image_back=None, |
|
mv_image_left=None, |
|
mv_image_right=None, |
|
steps=50, |
|
guidance_scale=7.5, |
|
seed=1234, |
|
octree_resolution=256, |
|
check_box_rembg=False, |
|
num_chunks=200000, |
|
randomize_seed: bool = False, |
|
): |
|
if not MV_MODE and image is None and caption is None: |
|
raise gr.Error("Please provide either a caption or an image.") |
|
if MV_MODE: |
|
if mv_image_front is None and mv_image_back is None and mv_image_left is None and mv_image_right is None: |
|
raise gr.Error("Please provide at least one view image.") |
|
image = {} |
|
if mv_image_front: |
|
image['front'] = mv_image_front |
|
if mv_image_back: |
|
image['back'] = mv_image_back |
|
if mv_image_left: |
|
image['left'] = mv_image_left |
|
if mv_image_right: |
|
image['right'] = mv_image_right |
|
|
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
|
|
octree_resolution = int(octree_resolution) |
|
if caption: print('prompt is', caption) |
|
save_folder = gen_save_folder() |
|
stats = { |
|
'model': { |
|
'shapegen': f'{args.model_path}/{args.subfolder}', |
|
'texgen': f'{args.texgen_model_path}', |
|
}, |
|
'params': { |
|
'caption': caption, |
|
'steps': steps, |
|
'guidance_scale': guidance_scale, |
|
'seed': seed, |
|
'octree_resolution': octree_resolution, |
|
'check_box_rembg': check_box_rembg, |
|
'num_chunks': num_chunks, |
|
} |
|
} |
|
time_meta = {} |
|
|
|
if image is None: |
|
start_time = time.time() |
|
try: |
|
image = t2i_worker(caption) |
|
except Exception as e: |
|
raise gr.Error(f"Text to 3D is disable. Please enable it by `python gradio_app.py --enable_t23d`.") |
|
time_meta['text2image'] = time.time() - start_time |
|
|
|
|
|
|
|
if MV_MODE: |
|
start_time = time.time() |
|
for k, v in image.items(): |
|
if check_box_rembg or v.mode == "RGB": |
|
img = rmbg_worker(v.convert('RGB')) |
|
image[k] = img |
|
time_meta['remove background'] = time.time() - start_time |
|
else: |
|
if check_box_rembg or image.mode == "RGB": |
|
start_time = time.time() |
|
image = rmbg_worker(image.convert('RGB')) |
|
time_meta['remove background'] = time.time() - start_time |
|
|
|
|
|
|
|
|
|
|
|
start_time = time.time() |
|
|
|
generator = torch.Generator() |
|
generator = generator.manual_seed(int(seed)) |
|
outputs = i23d_worker( |
|
image=image, |
|
num_inference_steps=steps, |
|
guidance_scale=guidance_scale, |
|
generator=generator, |
|
octree_resolution=octree_resolution, |
|
num_chunks=num_chunks, |
|
output_type='mesh' |
|
) |
|
time_meta['shape generation'] = time.time() - start_time |
|
logger.info("---Shape generation takes %s seconds ---" % (time.time() - start_time)) |
|
|
|
tmp_start = time.time() |
|
mesh = export_to_trimesh(outputs)[0] |
|
time_meta['export to trimesh'] = time.time() - tmp_start |
|
|
|
stats['number_of_faces'] = mesh.faces.shape[0] |
|
stats['number_of_vertices'] = mesh.vertices.shape[0] |
|
|
|
stats['time'] = time_meta |
|
main_image = image if not MV_MODE else image['front'] |
|
return mesh, main_image, save_folder, stats, seed |
|
|
|
|
|
def generation_all( |
|
caption=None, |
|
image=None, |
|
mv_image_front=None, |
|
mv_image_back=None, |
|
mv_image_left=None, |
|
mv_image_right=None, |
|
steps=50, |
|
guidance_scale=7.5, |
|
seed=1234, |
|
octree_resolution=256, |
|
check_box_rembg=False, |
|
num_chunks=200000, |
|
randomize_seed: bool = False, |
|
): |
|
start_time_0 = time.time() |
|
mesh, image, save_folder, stats, seed = _gen_shape( |
|
caption, |
|
image, |
|
mv_image_front=mv_image_front, |
|
mv_image_back=mv_image_back, |
|
mv_image_left=mv_image_left, |
|
mv_image_right=mv_image_right, |
|
steps=steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
octree_resolution=octree_resolution, |
|
check_box_rembg=check_box_rembg, |
|
num_chunks=num_chunks, |
|
randomize_seed=randomize_seed, |
|
) |
|
path = export_mesh(mesh, save_folder, textured=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tmp_time = time.time() |
|
mesh = face_reduce_worker(mesh) |
|
logger.info("---Face Reduction takes %s seconds ---" % (time.time() - tmp_time)) |
|
stats['time']['face reduction'] = time.time() - tmp_time |
|
|
|
tmp_time = time.time() |
|
textured_mesh = texgen_worker(mesh, image) |
|
logger.info("---Texture Generation takes %s seconds ---" % (time.time() - tmp_time)) |
|
stats['time']['texture generation'] = time.time() - tmp_time |
|
stats['time']['total'] = time.time() - start_time_0 |
|
|
|
textured_mesh.metadata['extras'] = stats |
|
path_textured = export_mesh(textured_mesh, save_folder, textured=True) |
|
model_viewer_html_textured = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH, |
|
textured=True) |
|
if args.low_vram_mode: |
|
torch.cuda.empty_cache() |
|
return ( |
|
gr.update(value=path), |
|
gr.update(value=path_textured), |
|
model_viewer_html_textured, |
|
stats, |
|
seed, |
|
) |
|
|
|
|
|
def shape_generation( |
|
caption=None, |
|
image=None, |
|
mv_image_front=None, |
|
mv_image_back=None, |
|
mv_image_left=None, |
|
mv_image_right=None, |
|
steps=50, |
|
guidance_scale=7.5, |
|
seed=1234, |
|
octree_resolution=256, |
|
check_box_rembg=False, |
|
num_chunks=200000, |
|
randomize_seed: bool = False, |
|
): |
|
start_time_0 = time.time() |
|
mesh, image, save_folder, stats, seed = _gen_shape( |
|
caption, |
|
image, |
|
mv_image_front=mv_image_front, |
|
mv_image_back=mv_image_back, |
|
mv_image_left=mv_image_left, |
|
mv_image_right=mv_image_right, |
|
steps=steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
octree_resolution=octree_resolution, |
|
check_box_rembg=check_box_rembg, |
|
num_chunks=num_chunks, |
|
randomize_seed=randomize_seed, |
|
) |
|
stats['time']['total'] = time.time() - start_time_0 |
|
mesh.metadata['extras'] = stats |
|
|
|
path = export_mesh(mesh, save_folder, textured=False) |
|
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH) |
|
if args.low_vram_mode: |
|
torch.cuda.empty_cache() |
|
return ( |
|
gr.update(value=path), |
|
model_viewer_html, |
|
stats, |
|
seed, |
|
) |
|
|
|
|
|
def build_app(): |
|
title = 'Hunyuan3D-2: High Resolution Textured 3D Assets Generation' |
|
if MV_MODE: |
|
title = 'Hunyuan3D-2mv: Image to 3D Generation with 1-4 Views' |
|
if 'mini' in args.subfolder: |
|
title = 'Hunyuan3D-2mini: Strong 0.6B Image to Shape Generator' |
|
if TURBO_MODE: |
|
title = title.replace(':', '-Turbo: Fast ') |
|
|
|
title_html = f""" |
|
<div style="font-size: 2em; font-weight: bold; text-align: center; margin-bottom: 5px"> |
|
|
|
{title} |
|
</div> |
|
<div align="center"> |
|
Tencent Hunyuan3D Team |
|
</div> |
|
<div align="center"> |
|
<a href="https://github.com/tencent/Hunyuan3D-2">Github</a>   |
|
<a href="http://3d-models.hunyuan.tencent.com">Homepage</a>   |
|
<a href="https://3d.hunyuan.tencent.com">Hunyuan3D Studio</a>   |
|
<a href="#">Technical Report</a>   |
|
<a href="https://huggingface.co/Tencent/Hunyuan3D-2"> Pretrained Models</a>   |
|
</div> |
|
""" |
|
custom_css = """ |
|
.app.svelte-wpkpf6.svelte-wpkpf6:not(.fill_width) { |
|
max-width: 1480px; |
|
} |
|
.mv-image button .wrap { |
|
font-size: 10px; |
|
} |
|
|
|
.mv-image .icon-wrap { |
|
width: 20px; |
|
} |
|
|
|
""" |
|
|
|
with gr.Blocks(theme=gr.themes.Base(), title='Hunyuan-3D-2.0', analytics_enabled=False, css=custom_css) as demo: |
|
gr.HTML(title_html) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
with gr.Tabs(selected='tab_img_prompt') as tabs_prompt: |
|
with gr.Tab('Image Prompt', id='tab_img_prompt', visible=not MV_MODE) as tab_ip: |
|
image = gr.Image(label='Image', type='pil', image_mode='RGBA', height=290) |
|
|
|
with gr.Tab('Text Prompt', id='tab_txt_prompt', visible=HAS_T2I and not MV_MODE) as tab_tp: |
|
caption = gr.Textbox(label='Text Prompt', |
|
placeholder='HunyuanDiT will be used to generate image.', |
|
info='Example: A 3D model of a cute cat, white background') |
|
with gr.Tab('MultiView Prompt', visible=MV_MODE) as tab_mv: |
|
|
|
with gr.Row(): |
|
mv_image_front = gr.Image(label='Front', type='pil', image_mode='RGBA', height=140, |
|
min_width=100, elem_classes='mv-image') |
|
mv_image_back = gr.Image(label='Back', type='pil', image_mode='RGBA', height=140, |
|
min_width=100, elem_classes='mv-image') |
|
with gr.Row(): |
|
mv_image_left = gr.Image(label='Left', type='pil', image_mode='RGBA', height=140, |
|
min_width=100, elem_classes='mv-image') |
|
mv_image_right = gr.Image(label='Right', type='pil', image_mode='RGBA', height=140, |
|
min_width=100, elem_classes='mv-image') |
|
|
|
with gr.Row(): |
|
btn = gr.Button(value='Gen Shape', variant='primary', min_width=100) |
|
btn_all = gr.Button(value='Gen Textured Shape', |
|
variant='primary', |
|
visible=HAS_TEXTUREGEN, |
|
min_width=100) |
|
|
|
with gr.Group(): |
|
file_out = gr.File(label="File", visible=False) |
|
file_out2 = gr.File(label="File", visible=False) |
|
|
|
with gr.Tabs(selected='tab_options' if TURBO_MODE else 'tab_export'): |
|
with gr.Tab("Options", id='tab_options', visible=TURBO_MODE): |
|
gen_mode = gr.Radio(label='Generation Mode', |
|
info='Recommendation: Turbo for most cases, Fast for very complex cases, Standard seldom use.', |
|
choices=['Turbo', 'Fast', 'Standard'], value='Turbo') |
|
decode_mode = gr.Radio(label='Decoding Mode', |
|
info='The resolution for exporting mesh from generated vectset', |
|
choices=['Low', 'Standard', 'High'], |
|
value='Standard') |
|
with gr.Tab('Advanced Options', id='tab_advanced_options'): |
|
with gr.Row(): |
|
check_box_rembg = gr.Checkbox(value=True, label='Remove Background', min_width=100) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True, min_width=100) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=1234, |
|
min_width=100, |
|
) |
|
with gr.Row(): |
|
num_steps = gr.Slider(maximum=100, |
|
minimum=1, |
|
value=5 if 'turbo' in args.subfolder else 30, |
|
step=1, label='Inference Steps') |
|
octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution') |
|
with gr.Row(): |
|
cfg_scale = gr.Number(value=5.0, label='Guidance Scale', min_width=100) |
|
num_chunks = gr.Slider(maximum=5000000, minimum=1000, value=8000, |
|
label='Number of Chunks', min_width=100) |
|
with gr.Tab("Export", id='tab_export'): |
|
with gr.Row(): |
|
file_type = gr.Dropdown(label='File Type', choices=SUPPORTED_FORMATS, |
|
value='glb', min_width=100) |
|
reduce_face = gr.Checkbox(label='Simplify Mesh', value=False, min_width=100) |
|
export_texture = gr.Checkbox(label='Include Texture', value=False, |
|
visible=False, min_width=100) |
|
target_face_num = gr.Slider(maximum=1000000, minimum=100, value=10000, |
|
label='Target Face Number') |
|
with gr.Row(): |
|
confirm_export = gr.Button(value="Transform", min_width=100) |
|
file_export = gr.DownloadButton(label="Download", variant='primary', |
|
interactive=False, min_width=100) |
|
|
|
with gr.Column(scale=6): |
|
with gr.Tabs(selected='gen_mesh_panel') as tabs_output: |
|
with gr.Tab('Generated Mesh', id='gen_mesh_panel'): |
|
html_gen_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output') |
|
with gr.Tab('Exporting Mesh', id='export_mesh_panel'): |
|
html_export_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output') |
|
with gr.Tab('Mesh Statistic', id='stats_panel'): |
|
stats = gr.Json({}, label='Mesh Stats') |
|
|
|
with gr.Column(scale=3 if MV_MODE else 2): |
|
with gr.Tabs(selected='tab_img_gallery') as gallery: |
|
with gr.Tab('Image to 3D Gallery', id='tab_img_gallery', visible=not MV_MODE) as tab_gi: |
|
with gr.Row(): |
|
gr.Examples(examples=example_is, inputs=[image], |
|
label=None, examples_per_page=18) |
|
|
|
with gr.Tab('Text to 3D Gallery', id='tab_txt_gallery', visible=HAS_T2I and not MV_MODE) as tab_gt: |
|
with gr.Row(): |
|
gr.Examples(examples=example_ts, inputs=[caption], |
|
label=None, examples_per_page=18) |
|
with gr.Tab('MultiView to 3D Gallery', id='tab_mv_gallery', visible=MV_MODE) as tab_mv: |
|
with gr.Row(): |
|
gr.Examples(examples=example_mvs, |
|
inputs=[mv_image_front, mv_image_back, mv_image_left, mv_image_right], |
|
label=None, examples_per_page=6) |
|
|
|
gr.HTML(f""" |
|
<div align="center"> |
|
Activated Model - Shape Generation ({args.model_path}/{args.subfolder}) ; Texture Generation ({'Hunyuan3D-2' if HAS_TEXTUREGEN else 'Unavailable'}) |
|
</div> |
|
""") |
|
if not HAS_TEXTUREGEN: |
|
gr.HTML(""" |
|
<div style="margin-top: 5px;" align="center"> |
|
<b>Warning: </b> |
|
Texture synthesis is disable due to missing requirements, |
|
please install requirements following <a href="https://github.com/Tencent/Hunyuan3D-2?tab=readme-ov-file#install-requirements">README.md</a>to activate it. |
|
</div> |
|
""") |
|
if not args.enable_t23d: |
|
gr.HTML(""" |
|
<div style="margin-top: 5px;" align="center"> |
|
<b>Warning: </b> |
|
Text to 3D is disable. To activate it, please run `python gradio_app.py --enable_t23d`. |
|
</div> |
|
""") |
|
|
|
tab_ip.select(fn=lambda: gr.update(selected='tab_img_gallery'), outputs=gallery) |
|
if HAS_T2I: |
|
tab_tp.select(fn=lambda: gr.update(selected='tab_txt_gallery'), outputs=gallery) |
|
|
|
btn.click( |
|
shape_generation, |
|
inputs=[ |
|
caption, |
|
image, |
|
mv_image_front, |
|
mv_image_back, |
|
mv_image_left, |
|
mv_image_right, |
|
num_steps, |
|
cfg_scale, |
|
seed, |
|
octree_resolution, |
|
check_box_rembg, |
|
num_chunks, |
|
randomize_seed, |
|
], |
|
outputs=[file_out, html_gen_mesh, stats, seed] |
|
).then( |
|
lambda: (gr.update(visible=False, value=False), gr.update(interactive=True), gr.update(interactive=True), |
|
gr.update(interactive=False)), |
|
outputs=[export_texture, reduce_face, confirm_export, file_export], |
|
).then( |
|
lambda: gr.update(selected='gen_mesh_panel'), |
|
outputs=[tabs_output], |
|
) |
|
|
|
btn_all.click( |
|
generation_all, |
|
inputs=[ |
|
caption, |
|
image, |
|
mv_image_front, |
|
mv_image_back, |
|
mv_image_left, |
|
mv_image_right, |
|
num_steps, |
|
cfg_scale, |
|
seed, |
|
octree_resolution, |
|
check_box_rembg, |
|
num_chunks, |
|
randomize_seed, |
|
], |
|
outputs=[file_out, file_out2, html_gen_mesh, stats, seed] |
|
).then( |
|
lambda: (gr.update(visible=True, value=True), gr.update(interactive=False), gr.update(interactive=True), |
|
gr.update(interactive=False)), |
|
outputs=[export_texture, reduce_face, confirm_export, file_export], |
|
).then( |
|
lambda: gr.update(selected='gen_mesh_panel'), |
|
outputs=[tabs_output], |
|
) |
|
|
|
def on_gen_mode_change(value): |
|
if value == 'Turbo': |
|
return gr.update(value=5) |
|
elif value == 'Fast': |
|
return gr.update(value=10) |
|
else: |
|
return gr.update(value=30) |
|
|
|
gen_mode.change(on_gen_mode_change, inputs=[gen_mode], outputs=[num_steps]) |
|
|
|
def on_decode_mode_change(value): |
|
if value == 'Low': |
|
return gr.update(value=196) |
|
elif value == 'Standard': |
|
return gr.update(value=256) |
|
else: |
|
return gr.update(value=384) |
|
|
|
decode_mode.change(on_decode_mode_change, inputs=[decode_mode], outputs=[octree_resolution]) |
|
|
|
def on_export_click(file_out, file_out2, file_type, reduce_face, export_texture, target_face_num): |
|
if file_out is None: |
|
raise gr.Error('Please generate a mesh first.') |
|
|
|
print(f'exporting {file_out}') |
|
print(f'reduce face to {target_face_num}') |
|
if export_texture: |
|
mesh = trimesh.load(file_out2) |
|
save_folder = gen_save_folder() |
|
path = export_mesh(mesh, save_folder, textured=True, type=file_type) |
|
|
|
|
|
save_folder = gen_save_folder() |
|
_ = export_mesh(mesh, save_folder, textured=True) |
|
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH, |
|
textured=True) |
|
else: |
|
mesh = trimesh.load(file_out) |
|
mesh = floater_remove_worker(mesh) |
|
mesh = degenerate_face_remove_worker(mesh) |
|
if reduce_face: |
|
mesh = face_reduce_worker(mesh, target_face_num) |
|
save_folder = gen_save_folder() |
|
path = export_mesh(mesh, save_folder, textured=False, type=file_type) |
|
|
|
|
|
save_folder = gen_save_folder() |
|
_ = export_mesh(mesh, save_folder, textured=False) |
|
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH, |
|
textured=False) |
|
print(f'export to {path}') |
|
return model_viewer_html, gr.update(value=path, interactive=True) |
|
|
|
confirm_export.click( |
|
lambda: gr.update(selected='export_mesh_panel'), |
|
outputs=[tabs_output], |
|
).then( |
|
on_export_click, |
|
inputs=[file_out, file_out2, file_type, reduce_face, export_texture, target_face_num], |
|
outputs=[html_export_mesh, file_export] |
|
) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == '__main__': |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mini') |
|
parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-mini-turbo') |
|
parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2') |
|
parser.add_argument('--port', type=int, default=8080) |
|
parser.add_argument('--host', type=str, default='0.0.0.0') |
|
parser.add_argument('--device', type=str, default='cuda') |
|
parser.add_argument('--mc_algo', type=str, default='mc') |
|
parser.add_argument('--cache-path', type=str, default='gradio_cache') |
|
parser.add_argument('--enable_t23d', action='store_true') |
|
parser.add_argument('--disable_tex', action='store_true') |
|
parser.add_argument('--enable_flashvdm', action='store_true') |
|
parser.add_argument('--compile', action='store_true') |
|
parser.add_argument('--low_vram_mode', action='store_true') |
|
args = parser.parse_args() |
|
|
|
SAVE_DIR = args.cache_path |
|
os.makedirs(SAVE_DIR, exist_ok=True) |
|
|
|
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) |
|
MV_MODE = 'mv' in args.model_path |
|
TURBO_MODE = 'turbo' in args.subfolder |
|
|
|
HTML_HEIGHT = 690 if MV_MODE else 650 |
|
HTML_WIDTH = 500 |
|
HTML_OUTPUT_PLACEHOLDER = f""" |
|
<div style='height: {650}px; width: 100%; border-radius: 8px; border-color: #e5e7eb; border-style: solid; border-width: 1px; display: flex; justify-content: center; align-items: center;'> |
|
<div style='text-align: center; font-size: 16px; color: #6b7280;'> |
|
<p style="color: #8d8d8d;">Welcome to Hunyuan3D!</p> |
|
<p style="color: #8d8d8d;">No mesh here.</p> |
|
</div> |
|
</div> |
|
""" |
|
|
|
INPUT_MESH_HTML = """ |
|
<div style='height: 490px; width: 100%; border-radius: 8px; |
|
border-color: #e5e7eb; order-style: solid; border-width: 1px;'> |
|
</div> |
|
""" |
|
example_is = get_example_img_list() |
|
example_ts = get_example_txt_list() |
|
example_mvs = get_example_mv_list() |
|
|
|
SUPPORTED_FORMATS = ['glb', 'obj', 'ply', 'stl'] |
|
|
|
HAS_TEXTUREGEN = False |
|
if not args.disable_tex: |
|
try: |
|
from hy3dgen.texgen import Hunyuan3DPaintPipeline |
|
|
|
texgen_worker = Hunyuan3DPaintPipeline.from_pretrained(args.texgen_model_path) |
|
if args.low_vram_mode: |
|
texgen_worker.enable_model_cpu_offload() |
|
|
|
|
|
|
|
|
|
|
|
|
|
HAS_TEXTUREGEN = True |
|
except Exception as e: |
|
print(e) |
|
print("Failed to load texture generator.") |
|
print('Please try to install requirements by following README.md') |
|
HAS_TEXTUREGEN = False |
|
|
|
HAS_T2I = True |
|
if args.enable_t23d: |
|
from hy3dgen.text2image import HunyuanDiTPipeline |
|
|
|
t2i_worker = HunyuanDiTPipeline('Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled', device=args.device) |
|
HAS_T2I = True |
|
|
|
from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \ |
|
Hunyuan3DDiTFlowMatchingPipeline |
|
from hy3dgen.shapegen.pipelines import export_to_trimesh |
|
from hy3dgen.rembg import BackgroundRemover |
|
|
|
rmbg_worker = BackgroundRemover() |
|
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained( |
|
args.model_path, |
|
subfolder=args.subfolder, |
|
use_safetensors=True, |
|
device=args.device, |
|
) |
|
if args.enable_flashvdm: |
|
mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo |
|
i23d_worker.enable_flashvdm(mc_algo=mc_algo) |
|
if args.compile: |
|
i23d_worker.compile() |
|
|
|
floater_remove_worker = FloaterRemover() |
|
degenerate_face_remove_worker = DegenerateFaceRemover() |
|
face_reduce_worker = FaceReducer() |
|
|
|
|
|
|
|
app = FastAPI() |
|
|
|
static_dir = Path(SAVE_DIR).absolute() |
|
static_dir.mkdir(parents=True, exist_ok=True) |
|
app.mount("/static", StaticFiles(directory=static_dir, html=True), name="static") |
|
shutil.copytree('./assets/env_maps', os.path.join(static_dir, 'env_maps'), dirs_exist_ok=True) |
|
|
|
if args.low_vram_mode: |
|
torch.cuda.empty_cache() |
|
demo = build_app() |
|
app = gr.mount_gradio_app(app, demo, path="/") |
|
uvicorn.run(app, host=args.host, port=args.port, workers=1) |
|
|