File size: 11,066 Bytes
29b17c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
"""
A model worker executes the model.
"""
import argparse
import asyncio
import base64
import logging
import logging.handlers
import os
import sys
import tempfile
import threading
import traceback
import uuid
from io import BytesIO
import torch
import trimesh
import uvicorn
from PIL import Image
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse, FileResponse
from hy3dgen.rembg import BackgroundRemover
from hy3dgen.shapegen import Hunyuan3DDiTFlowMatchingPipeline, FloaterRemover, DegenerateFaceRemover, FaceReducer, \
MeshSimplifier
from hy3dgen.texgen import Hunyuan3DPaintPipeline
from hy3dgen.text2image import HunyuanDiTPipeline
LOGDIR = '.'
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
handler = None
def build_logger(logger_name, logger_filename):
global handler
formatter = logging.Formatter(
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
# Set the format of root handlers
if not logging.getLogger().handlers:
logging.basicConfig(level=logging.INFO)
logging.getLogger().handlers[0].setFormatter(formatter)
# Redirect stdout and stderr to loggers
stdout_logger = logging.getLogger("stdout")
stdout_logger.setLevel(logging.INFO)
sl = StreamToLogger(stdout_logger, logging.INFO)
sys.stdout = sl
stderr_logger = logging.getLogger("stderr")
stderr_logger.setLevel(logging.ERROR)
sl = StreamToLogger(stderr_logger, logging.ERROR)
sys.stderr = sl
# Get logger
logger = logging.getLogger(logger_name)
logger.setLevel(logging.INFO)
# Add a file handler for all loggers
if handler is None:
os.makedirs(LOGDIR, exist_ok=True)
filename = os.path.join(LOGDIR, logger_filename)
handler = logging.handlers.TimedRotatingFileHandler(
filename, when='D', utc=True, encoding='UTF-8')
handler.setFormatter(formatter)
for name, item in logging.root.manager.loggerDict.items():
if isinstance(item, logging.Logger):
item.addHandler(handler)
return logger
class StreamToLogger(object):
"""
Fake file-like stream object that redirects writes to a logger instance.
"""
def __init__(self, logger, log_level=logging.INFO):
self.terminal = sys.stdout
self.logger = logger
self.log_level = log_level
self.linebuf = ''
def __getattr__(self, attr):
return getattr(self.terminal, attr)
def write(self, buf):
temp_linebuf = self.linebuf + buf
self.linebuf = ''
for line in temp_linebuf.splitlines(True):
# From the io.TextIOWrapper docs:
# On output, if newline is None, any '\n' characters written
# are translated to the system default line separator.
# By default sys.stdout.write() expects '\n' newlines and then
# translates them so this is still cross platform.
if line[-1] == '\n':
self.logger.log(self.log_level, line.rstrip())
else:
self.linebuf += line
def flush(self):
if self.linebuf != '':
self.logger.log(self.log_level, self.linebuf.rstrip())
self.linebuf = ''
def pretty_print_semaphore(semaphore):
if semaphore is None:
return "None"
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
SAVE_DIR = 'gradio_cache'
os.makedirs(SAVE_DIR, exist_ok=True)
worker_id = str(uuid.uuid4())[:6]
logger = build_logger("controller", f"{SAVE_DIR}/controller.log")
def load_image_from_base64(image):
return Image.open(BytesIO(base64.b64decode(image)))
class ModelWorker:
def __init__(self,
model_path='tencent/Hunyuan3D-2mini',
tex_model_path='tencent/Hunyuan3D-2',
subfolder='hunyuan3d-dit-v2-mini-turbo',
device='cuda',
enable_tex=False):
self.model_path = model_path
self.worker_id = worker_id
self.device = device
logger.info(f"Loading the model {model_path} on worker {worker_id} ...")
self.rembg = BackgroundRemover()
self.pipeline = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
model_path,
subfolder=subfolder,
use_safetensors=True,
device=device,
)
self.pipeline.enable_flashvdm(mc_algo='mc')
# self.pipeline_t2i = HunyuanDiTPipeline(
# 'Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled',
# device=device
# )
if enable_tex:
self.pipeline_tex = Hunyuan3DPaintPipeline.from_pretrained(tex_model_path)
def get_queue_length(self):
if model_semaphore is None:
return 0
else:
return args.limit_model_concurrency - model_semaphore._value + (len(
model_semaphore._waiters) if model_semaphore._waiters is not None else 0)
def get_status(self):
return {
"speed": 1,
"queue_length": self.get_queue_length(),
}
@torch.inference_mode()
def generate(self, uid, params):
if 'image' in params:
image = params["image"]
image = load_image_from_base64(image)
else:
if 'text' in params:
text = params["text"]
image = self.pipeline_t2i(text)
else:
raise ValueError("No input image or text provided")
image = self.rembg(image)
params['image'] = image
if 'mesh' in params:
mesh = trimesh.load(BytesIO(base64.b64decode(params["mesh"])), file_type='glb')
else:
seed = params.get("seed", 1234)
params['generator'] = torch.Generator(self.device).manual_seed(seed)
params['octree_resolution'] = params.get("octree_resolution", 128)
params['num_inference_steps'] = params.get("num_inference_steps", 5)
params['guidance_scale'] = params.get('guidance_scale', 5.0)
params['mc_algo'] = 'mc'
import time
start_time = time.time()
mesh = self.pipeline(**params)[0]
logger.info("--- %s seconds ---" % (time.time() - start_time))
if params.get('texture', False):
mesh = FloaterRemover()(mesh)
mesh = DegenerateFaceRemover()(mesh)
mesh = FaceReducer()(mesh, max_facenum=params.get('face_count', 40000))
mesh = self.pipeline_tex(mesh, image)
type = params.get('type', 'glb')
with tempfile.NamedTemporaryFile(suffix=f'.{type}', delete=False) as temp_file:
mesh.export(temp_file.name)
mesh = trimesh.load(temp_file.name)
save_path = os.path.join(SAVE_DIR, f'{str(uid)}.{type}')
mesh.export(save_path)
torch.cuda.empty_cache()
return save_path, uid
app = FastAPI()
from fastapi.middleware.cors import CORSMiddleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # 你可以指定允许的来源
allow_credentials=True,
allow_methods=["*"], # 允许所有方法
allow_headers=["*"], # 允许所有头部
)
@app.post("/generate")
async def generate(request: Request):
logger.info("Worker generating...")
params = await request.json()
uid = uuid.uuid4()
try:
file_path, uid = worker.generate(uid, params)
return FileResponse(file_path)
except ValueError as e:
traceback.print_exc()
print("Caught ValueError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
return JSONResponse(ret, status_code=404)
except torch.cuda.CudaError as e:
print("Caught torch.cuda.CudaError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
return JSONResponse(ret, status_code=404)
except Exception as e:
print("Caught Unknown Error", e)
traceback.print_exc()
ret = {
"text": server_error_msg,
"error_code": 1,
}
return JSONResponse(ret, status_code=404)
@app.post("/send")
async def generate(request: Request):
logger.info("Worker send...")
params = await request.json()
uid = uuid.uuid4()
threading.Thread(target=worker.generate, args=(uid, params,)).start()
ret = {"uid": str(uid)}
return JSONResponse(ret, status_code=200)
@app.get("/status/{uid}")
async def status(uid: str):
save_file_path = os.path.join(SAVE_DIR, f'{uid}.glb')
print(save_file_path, os.path.exists(save_file_path))
if not os.path.exists(save_file_path):
response = {'status': 'processing'}
return JSONResponse(response, status_code=200)
else:
base64_str = base64.b64encode(open(save_file_path, 'rb').read()).decode()
response = {'status': 'completed', 'model_base64': base64_str}
return JSONResponse(response, status_code=200)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=8081)
parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mini')
parser.add_argument("--tex_model_path", type=str, default='tencent/Hunyuan3D-2')
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--limit-model-concurrency", type=int, default=5)
parser.add_argument('--enable_tex', action='store_true')
args = parser.parse_args()
logger.info(f"args: {args}")
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
worker = ModelWorker(model_path=args.model_path, device=args.device, enable_tex=args.enable_tex,
tex_model_path=args.tex_model_path)
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|