model_testing / app.py
ekt1701's picture
Update app.py
355b9a2 verified
raw
history blame
4.53 kB
import spaces
import gradio as gr
import torch
from diffusers import FluxPipeline, FluxTransformer2DModel, FlowMatchEulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from PIL import Image
import numpy as np
import random
import os
hf_token = os.environ.get('HF_TOKEN')
# Constants
model = "black-forest-labs/FLUX.1-dev"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU()
def infer(prompt, width, height, num_inference_steps, guidance_scale, nums, seed=42, randomize_seed=True, progress=gr.Progress(track_tqdm=True)):
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize model inside the GPU-enabled function
try:
transformer = FluxTransformer2DModel.from_single_file(
"https://huggingface.co/lodestones/Chroma/resolve/main/chroma-unlocked-v27.safetensors",
torch_dtype=torch.bfloat16,
token=hf_token
)
except KeyError as e:
print(f"Error loading chroma-unlocked-v27.safetensors: {e}. Falling back to pretrained model.")
transformer = FluxTransformer2DModel.from_pretrained(
"lodestones/Chroma",
subfolder="transformer",
torch_dtype=torch.bfloat16,
token=hf_token
)
pipe = FluxPipeline.from_pretrained(
model,
transformer=transformer,
torch_dtype=torch.bfloat16,
token=hf_token
)
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(
pipe.scheduler.config, use_beta_sigmas=True
)
pipe.to(device)
# Generate images
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
images = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=nums,
generator=generator
).images
return images, seed
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("<h1><center>Model Testing</center></h1><p><center>Chroma</center></p>")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=2,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Gallery", format="png", columns=1, preview=True, height=400)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0,
maximum=10,
step=0.1,
value=3.5,
)
with gr.Row():
nums = gr.Slider(
label="Number of Images",
minimum=1,
maximum=2,
step=1,
value=1,
scale=1,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=-1,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, width, height, num_inference_steps, guidance_scale, nums, seed, randomize_seed],
outputs=[result, seed]
)
demo.launch()