Spaces:
Sleeping
Sleeping
Commit
·
6c6ef93
1
Parent(s):
0844fcc
Add examples
Browse files
README.md
CHANGED
@@ -19,4 +19,3 @@ names, when given the output of Hex-Rays decompiler output of a function. More
|
|
19 |
## TODO
|
20 |
|
21 |
* We currently use `transformers` which de-quantizes the gguf. This is easy but inefficient. Can we use llama.cpp or Ollama with zerogpu?
|
22 |
-
* Add examples
|
|
|
19 |
## TODO
|
20 |
|
21 |
* We currently use `transformers` which de-quantizes the gguf. This is easy but inefficient. Can we use llama.cpp or Ollama with zerogpu?
|
|
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import frontmatter
|
2 |
import gradio as gr
|
|
|
3 |
import spaces
|
4 |
-
import torch
|
5 |
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
7 |
|
@@ -29,6 +29,8 @@ example = """int __fastcall sub_B0D04(int a1, int a2)
|
|
29 |
return result;
|
30 |
}"""
|
31 |
|
|
|
|
|
32 |
# Then create the pipeline with the model and tokenizer
|
33 |
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
|
34 |
|
@@ -70,10 +72,12 @@ def predict(code):
|
|
70 |
return pipe_out[0]["generated_text"]
|
71 |
|
72 |
|
|
|
73 |
demo = gr.Interface(
|
74 |
fn=predict,
|
75 |
-
inputs=gr.Text(
|
76 |
outputs=gr.JSON(label="Aidapal Output"),
|
77 |
description=frontmatter.load("README.md").content,
|
|
|
78 |
)
|
79 |
demo.launch()
|
|
|
1 |
import frontmatter
|
2 |
import gradio as gr
|
3 |
+
import json
|
4 |
import spaces
|
|
|
5 |
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
7 |
|
|
|
29 |
return result;
|
30 |
}"""
|
31 |
|
32 |
+
examples = [j["input"] for j in json.load(open("gpt4_juiced_dataset.json"))]
|
33 |
+
|
34 |
# Then create the pipeline with the model and tokenizer
|
35 |
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
|
36 |
|
|
|
72 |
return pipe_out[0]["generated_text"]
|
73 |
|
74 |
|
75 |
+
|
76 |
demo = gr.Interface(
|
77 |
fn=predict,
|
78 |
+
inputs=gr.Text(label="Hex-Rays decompiler output"),
|
79 |
outputs=gr.JSON(label="Aidapal Output"),
|
80 |
description=frontmatter.load("README.md").content,
|
81 |
+
examples=examples
|
82 |
)
|
83 |
demo.launch()
|