File size: 661 Bytes
7dfd5db
9c9d121
32cf640
7dfd5db
2144fdb
3b930a2
 
 
 
771a832
2144fdb
f37ed6f
e62c0db
 
 
 
 
 
 
df6ba08
3b930a2
9c9d121
7dfd5db
df6ba08
7dfd5db
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import gradio as gr
import spaces
import torch

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

model_id = "AverageBusinessUser/aidapal"
filename = "aidapal-8k.Q4_K_M.gguf"

print("Downloading model")

tokenizer = AutoTokenizer.from_pretrained(model_id, gguf_file=filename)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    gguf_file=filename,
    device_map="auto"
)

# Then create the pipeline with the model and tokenizer
#pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer)

@spaces.GPU
def greet(name):
    return "what"

demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch()