File size: 754 Bytes
cbfae43
7dfd5db
9c9d121
32cf640
7dfd5db
2144fdb
3b930a2
 
 
 
771a832
2144fdb
f37ed6f
e62c0db
 
 
 
 
 
 
4f80c95
3b930a2
9c9d121
7dfd5db
7f1d1fc
7dfd5db
cbfae43
 
7dfd5db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import frontmatter
import gradio as gr
import spaces
import torch

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

model_id = "AverageBusinessUser/aidapal"
filename = "aidapal-8k.Q4_K_M.gguf"

print("Downloading model")

tokenizer = AutoTokenizer.from_pretrained(model_id, gguf_file=filename)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    gguf_file=filename,
    device_map="auto"
)

# Then create the pipeline with the model and tokenizer
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer)

@spaces.GPU
def greet(name):
    return pipe(name)

demo = gr.Interface(fn=greet, inputs="text", outputs="text",
                    description=frontmatter.load("README.md").content)
demo.launch()