Spaces:
Running
Running
File size: 16,144 Bytes
21db53c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
from typing import Optional
import numpy
from grpc.aio import AioRpcError
from httpx import HTTPError
from loguru import logger
from qdrant_client import AsyncQdrantClient
from qdrant_client.http import models
from qdrant_client.models import RecommendStrategy
from app.Models.api_models.search_api_model import SearchModelEnum, SearchBasisEnum
from app.Models.img_data import ImageData
from app.Models.query_params import FilterParams
from app.Models.search_result import SearchResult
from app.Services.lifespan_service import LifespanService
from app.config import config, QdrantMode
from app.util.retry_deco_async import wrap_object, retry_async
class PointNotFoundError(ValueError):
def __init__(self, point_id: str):
self.point_id = point_id
super().__init__(f"Point {point_id} not found.")
class VectorDbContext(LifespanService):
IMG_VECTOR = "image_vector"
TEXT_VECTOR = "text_contain_vector"
AVAILABLE_POINT_TYPES = models.Record | models.ScoredPoint | models.PointStruct
def __init__(self):
match config.qdrant.mode:
case QdrantMode.SERVER:
self._client = AsyncQdrantClient(host=config.qdrant.host, port=config.qdrant.port,
grpc_port=config.qdrant.grpc_port, api_key=config.qdrant.api_key,
prefer_grpc=config.qdrant.prefer_grpc)
wrap_object(self._client, retry_async((AioRpcError, HTTPError)))
case QdrantMode.LOCAL:
self._client = AsyncQdrantClient(path=config.qdrant.local_path)
case QdrantMode.MEMORY:
logger.warning("Using in-memory Qdrant client. Data will be lost after application restart. "
"This should only be used for testing and debugging.")
self._client = AsyncQdrantClient(":memory:")
case _:
raise ValueError("Invalid Qdrant mode.")
self.collection_name = config.qdrant.coll
async def on_load(self):
if not await self.check_collection():
logger.warning("Collection not found. Initializing...")
await self.initialize_collection()
async def retrieve_by_id(self, image_id: str, with_vectors=False) -> ImageData:
"""
Retrieve an item from database by id. Will raise PointNotFoundError if the given ID doesn't exist.
:param image_id: The ID to retrieve.
:param with_vectors: Whether to retrieve vectors.
:return: The retrieved item.
"""
logger.info("Retrieving item {} from database...", image_id)
result = await self._client.retrieve(collection_name=self.collection_name,
ids=[image_id],
with_payload=True,
with_vectors=with_vectors)
if len(result) != 1:
logger.error("Point not exist.")
raise PointNotFoundError(image_id)
return self._get_img_data_from_point(result[0])
async def retrieve_by_ids(self, image_id: list[str], with_vectors=False) -> list[ImageData]:
"""
Retrieve items from the database by IDs.
An exception is thrown if there are items in the IDs that do not exist in the database.
:param image_id: The list of IDs to retrieve.
:param with_vectors: Whether to retrieve vectors.
:return: The list of retrieved items.
"""
logger.info("Retrieving {} items from database...", len(image_id))
result = await self._client.retrieve(collection_name=self.collection_name,
ids=image_id,
with_payload=True,
with_vectors=with_vectors)
result_point_ids = {t.id for t in result}
missing_point_ids = set(image_id) - result_point_ids
if len(missing_point_ids) > 0:
logger.error("{} points not exist.", len(missing_point_ids))
raise PointNotFoundError(str(missing_point_ids))
return self._get_img_data_from_points(result)
async def validate_ids(self, image_id: list[str]) -> list[str]:
"""
Validate a list of IDs. Will return a list of valid IDs.
:param image_id: The list of IDs to validate.
:return: The list of valid IDs.
"""
logger.info("Validating {} items from database...", len(image_id))
result = await self._client.retrieve(collection_name=self.collection_name,
ids=image_id,
with_payload=False,
with_vectors=False)
return [t.id for t in result]
async def querySearch(self, query_vector, query_vector_name: str = IMG_VECTOR,
top_k=10, skip=0, filter_param: FilterParams | None = None) -> list[SearchResult]:
logger.info("Querying Qdrant... top_k = {}", top_k)
result = await self._client.search(collection_name=self.collection_name,
query_vector=(query_vector_name, query_vector),
query_filter=self._get_filters_by_filter_param(filter_param),
limit=top_k,
offset=skip,
with_payload=True)
logger.success("Query completed!")
return [self._get_search_result_from_scored_point(t) for t in result]
async def querySimilar(self,
query_vector_name: str = IMG_VECTOR,
search_id: Optional[str] = None,
positive_vectors: Optional[list[numpy.ndarray]] = None,
negative_vectors: Optional[list[numpy.ndarray]] = None,
mode: Optional[SearchModelEnum] = None,
with_vectors: bool = False,
filter_param: FilterParams | None = None,
top_k: int = 10,
skip: int = 0) -> list[SearchResult]:
_positive_vectors = [t.tolist() for t in positive_vectors] if positive_vectors is not None else [search_id]
_negative_vectors = [t.tolist() for t in negative_vectors] if negative_vectors is not None else None
_strategy = None if mode is None else (RecommendStrategy.AVERAGE_VECTOR if
mode == SearchModelEnum.average else RecommendStrategy.BEST_SCORE)
# since only combined_search need return vectors, We can define _combined_search_need_vectors like below
_combined_search_need_vectors = [
self.IMG_VECTOR if query_vector_name == self.TEXT_VECTOR else self.TEXT_VECTOR] if with_vectors else None
logger.info("Querying Qdrant... top_k = {}", top_k)
result = await self._client.recommend(collection_name=self.collection_name,
using=query_vector_name,
positive=_positive_vectors,
negative=_negative_vectors,
strategy=_strategy,
with_vectors=_combined_search_need_vectors,
query_filter=self._get_filters_by_filter_param(filter_param),
limit=top_k,
offset=skip,
with_payload=True)
logger.success("Query completed!")
return [self._get_search_result_from_scored_point(t) for t in result]
async def insertItems(self, items: list[ImageData]):
logger.info("Inserting {} items into Qdrant...", len(items))
points = [self._get_point_from_img_data(t) for t in items]
response = await self._client.upsert(collection_name=self.collection_name,
wait=True,
points=points)
logger.success("Insert completed! Status: {}", response.status)
async def deleteItems(self, ids: list[str]):
logger.info("Deleting {} items from Qdrant...", len(ids))
response = await self._client.delete(collection_name=self.collection_name,
points_selector=models.PointIdsList(
points=ids
),
)
logger.success("Delete completed! Status: {}", response.status)
async def updatePayload(self, new_data: ImageData):
"""
Update the payload of an existing item in the database.
Warning: This method will not update the vector of the item.
:param new_data: The new data to update.
"""
response = await self._client.set_payload(collection_name=self.collection_name,
payload=new_data.payload,
points=[str(new_data.id)],
wait=True)
logger.success("Update completed! Status: {}", response.status)
async def updateVectors(self, new_points: list[ImageData]):
resp = await self._client.update_vectors(collection_name=self.collection_name,
points=[self._get_vector_from_img_data(t) for t in new_points],
)
logger.success("Update vectors completed! Status: {}", resp.status)
async def scroll_points(self,
from_id: str | None = None,
count=50,
with_vectors=False,
filter_param: FilterParams | None = None,
) -> tuple[list[ImageData], str]:
resp, next_id = await self._client.scroll(collection_name=self.collection_name,
limit=count,
offset=from_id,
with_vectors=with_vectors,
scroll_filter=self._get_filters_by_filter_param(filter_param)
)
return [self._get_img_data_from_point(t) for t in resp], next_id
async def get_counts(self, exact: bool) -> int:
resp = await self._client.count(collection_name=self.collection_name, exact=exact)
return resp.count
async def check_collection(self) -> bool:
resp = await self._client.get_collections()
resp = [t.name for t in resp.collections]
return self.collection_name in resp
async def initialize_collection(self):
if await self.check_collection():
logger.warning("Collection already exists. Skip initialization.")
return
logger.info("Initializing database, collection name: {}", self.collection_name)
vectors_config = {
self.IMG_VECTOR: models.VectorParams(size=768, distance=models.Distance.COSINE),
self.TEXT_VECTOR: models.VectorParams(size=768, distance=models.Distance.COSINE)
}
await self._client.create_collection(collection_name=self.collection_name,
vectors_config=vectors_config)
logger.success("Collection created!")
@classmethod
def _get_vector_from_img_data(cls, img_data: ImageData) -> models.PointVectors:
vector = {}
if img_data.image_vector is not None:
vector[cls.IMG_VECTOR] = img_data.image_vector.tolist()
if img_data.text_contain_vector is not None:
vector[cls.TEXT_VECTOR] = img_data.text_contain_vector.tolist()
return models.PointVectors(
id=str(img_data.id),
vector=vector
)
@classmethod
def _get_point_from_img_data(cls, img_data: ImageData) -> models.PointStruct:
return models.PointStruct(
id=str(img_data.id),
payload=img_data.payload,
vector=cls._get_vector_from_img_data(img_data).vector
)
def _get_img_data_from_point(self, point: AVAILABLE_POINT_TYPES) -> ImageData:
return (ImageData
.from_payload(point.id,
point.payload,
image_vector=numpy.array(point.vector[self.IMG_VECTOR], dtype=numpy.float32)
if point.vector and self.IMG_VECTOR in point.vector else None,
text_contain_vector=numpy.array(point.vector[self.TEXT_VECTOR], dtype=numpy.float32)
if point.vector and self.TEXT_VECTOR in point.vector else None
))
def _get_img_data_from_points(self, points: list[AVAILABLE_POINT_TYPES]) -> list[ImageData]:
return [self._get_img_data_from_point(t) for t in points]
def _get_search_result_from_scored_point(self, point: models.ScoredPoint) -> SearchResult:
return SearchResult(img=self._get_img_data_from_point(point), score=point.score)
@classmethod
def vector_name_for_basis(cls, basis: SearchBasisEnum) -> str:
match basis:
case SearchBasisEnum.vision:
return cls.IMG_VECTOR
case SearchBasisEnum.ocr:
return cls.TEXT_VECTOR
case _:
raise ValueError("Invalid basis")
@staticmethod
def _get_filters_by_filter_param(filter_param: FilterParams | None) -> models.Filter | None:
if filter_param is None:
return None
filters = []
neg_filter = []
if filter_param.min_width is not None and filter_param.min_width > 0:
filters.append(models.FieldCondition(
key="width",
range=models.Range(
gte=filter_param.min_width
)
))
if filter_param.min_height is not None and filter_param.min_height > 0:
filters.append(models.FieldCondition(
key="height",
range=models.Range(
gte=filter_param.min_height
)
))
if filter_param.min_ratio is not None:
filters.append(models.FieldCondition(
key="aspect_ratio",
range=models.Range(
gte=filter_param.min_ratio,
lte=filter_param.max_ratio
)
))
if filter_param.starred is not None:
filters.append(models.FieldCondition(
key="starred",
match=models.MatchValue(
value=filter_param.starred
)
))
if filter_param.ocr_text is not None:
filters.append(models.FieldCondition(
key="ocr_text_lower",
match=models.MatchText(
text=filter_param.ocr_text.lower()
)
))
if filter_param.categories is not None:
filters.append(models.FieldCondition(
key="categories",
match=models.MatchAny(
any=filter_param.categories
)
))
if filter_param.categories_negative is not None:
neg_filter.append(models.FieldCondition(
key="categories",
match=models.MatchAny(any=filter_param.categories_negative),
))
if not filters and not neg_filter:
return None
return models.Filter(
must=filters,
must_not=neg_filter
)
|