Spaces:
Runtime error
Runtime error
Allow for selecting dimensionality reduction techniques and sentence embedding model. Add UMAP and all-mpnet-base-v2.
Browse files- app.py +25 -9
- requirements.txt +3 -1
app.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
import logging
|
2 |
-
from typing import Any, List, Optional
|
3 |
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
import streamlit as st
|
|
|
7 |
from bokeh.models import ColumnDataSource, HoverTool
|
8 |
from bokeh.palettes import Cividis256 as Pallete
|
9 |
from bokeh.plotting import figure
|
@@ -17,8 +18,8 @@ SEED = 0
|
|
17 |
|
18 |
|
19 |
@st.cache(show_spinner=False, allow_output_mutation=True)
|
20 |
-
def load_model():
|
21 |
-
embedder =
|
22 |
return SentenceTransformer(embedder)
|
23 |
|
24 |
|
@@ -39,6 +40,11 @@ def get_tsne_embeddings(
|
|
39 |
return tsne.fit_transform(embeddings)
|
40 |
|
41 |
|
|
|
|
|
|
|
|
|
|
|
42 |
def draw_interactive_scatter_plot(
|
43 |
texts: np.ndarray, xs: np.ndarray, ys: np.ndarray, values: np.ndarray, labels: np.ndarray, text_column: str, label_column: str
|
44 |
) -> Any:
|
@@ -62,7 +68,14 @@ def draw_interactive_scatter_plot(
|
|
62 |
return p
|
63 |
|
64 |
|
65 |
-
def generate_plot(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
logger.info("Loading dataset in memory")
|
67 |
extension = uploaded_file.name.split(".")[-1]
|
68 |
df = pd.read_csv(uploaded_file, sep="\t" if extension == "tsv" else ",")
|
@@ -77,11 +90,11 @@ def generate_plot(uploaded_file: st.uploaded_file_manager.UploadedFile, text_col
|
|
77 |
embeddings = embed_text(df[text_column].values.tolist(), model)
|
78 |
logger.info("Encoding labels")
|
79 |
encoded_labels = encode_labels(df[label_column])
|
80 |
-
logger.info("Running
|
81 |
-
|
82 |
logger.info("Generating figure")
|
83 |
plot = draw_interactive_scatter_plot(
|
84 |
-
df[text_column].values,
|
85 |
)
|
86 |
return plot
|
87 |
|
@@ -92,10 +105,13 @@ uploaded_file = st.file_uploader("Choose an csv/tsv file...", type=["csv", "tsv"
|
|
92 |
text_column = st.text_input("Text column name", "text")
|
93 |
label_column = st.text_input("Numerical/categorical column name (ignore if not applicable)", "label")
|
94 |
sample = st.number_input("Maximum number of documents to use", 1, 100000, 1000)
|
95 |
-
|
|
|
|
|
|
|
96 |
|
97 |
if uploaded_file:
|
98 |
-
plot = generate_plot(uploaded_file, text_column, label_column, sample, model)
|
99 |
logger.info("Displaying plot")
|
100 |
st.bokeh_chart(plot)
|
101 |
logger.info("Done")
|
|
|
1 |
import logging
|
2 |
+
from typing import Any, Callable, List, Optional
|
3 |
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
import streamlit as st
|
7 |
+
import umap
|
8 |
from bokeh.models import ColumnDataSource, HoverTool
|
9 |
from bokeh.palettes import Cividis256 as Pallete
|
10 |
from bokeh.plotting import figure
|
|
|
18 |
|
19 |
|
20 |
@st.cache(show_spinner=False, allow_output_mutation=True)
|
21 |
+
def load_model(model_name):
|
22 |
+
embedder = model_name
|
23 |
return SentenceTransformer(embedder)
|
24 |
|
25 |
|
|
|
40 |
return tsne.fit_transform(embeddings)
|
41 |
|
42 |
|
43 |
+
def get_umap_embeddings(embeddings: np.ndarray) -> np.ndarray:
|
44 |
+
umap_model = umap.UMAP(n_neighbors=15, min_dist=0.1, n_components=2, random_state=SEED)
|
45 |
+
return umap_model.fit_transform(embeddings)
|
46 |
+
|
47 |
+
|
48 |
def draw_interactive_scatter_plot(
|
49 |
texts: np.ndarray, xs: np.ndarray, ys: np.ndarray, values: np.ndarray, labels: np.ndarray, text_column: str, label_column: str
|
50 |
) -> Any:
|
|
|
68 |
return p
|
69 |
|
70 |
|
71 |
+
def generate_plot(
|
72 |
+
uploaded_file: st.uploaded_file_manager.UploadedFile,
|
73 |
+
text_column: str,
|
74 |
+
label_column: str,
|
75 |
+
sample: Optional[int],
|
76 |
+
dimensionality_reduction_function: Callable,
|
77 |
+
model: SentenceTransformer,
|
78 |
+
):
|
79 |
logger.info("Loading dataset in memory")
|
80 |
extension = uploaded_file.name.split(".")[-1]
|
81 |
df = pd.read_csv(uploaded_file, sep="\t" if extension == "tsv" else ",")
|
|
|
90 |
embeddings = embed_text(df[text_column].values.tolist(), model)
|
91 |
logger.info("Encoding labels")
|
92 |
encoded_labels = encode_labels(df[label_column])
|
93 |
+
logger.info("Running dimensionality reduction")
|
94 |
+
embeddings_2d = dimensionality_reduction_function(embeddings)
|
95 |
logger.info("Generating figure")
|
96 |
plot = draw_interactive_scatter_plot(
|
97 |
+
df[text_column].values, embeddings_2d[:, 0], embeddings_2d[:, 1], encoded_labels.values, df[label_column].values, text_column, label_column
|
98 |
)
|
99 |
return plot
|
100 |
|
|
|
105 |
text_column = st.text_input("Text column name", "text")
|
106 |
label_column = st.text_input("Numerical/categorical column name (ignore if not applicable)", "label")
|
107 |
sample = st.number_input("Maximum number of documents to use", 1, 100000, 1000)
|
108 |
+
dimensionality_reduction = st.selectbox("Dimensionality Reduction algorithm", ["UMAP", "t-SNE"], 0)
|
109 |
+
model_name = st.selectbox("Sentence embedding model", ["distiluse-base-multilingual-cased-v1", "all-mpnet-base-v2"], 0)
|
110 |
+
model = load_model(model_name)
|
111 |
+
dimensionality_reduction_function = get_umap_embeddings if dimensionality_reduction == "UMAP" else get_tsne_embeddings
|
112 |
|
113 |
if uploaded_file:
|
114 |
+
plot = generate_plot(uploaded_file, text_column, label_column, sample, dimensionality_reduction_function, model)
|
115 |
logger.info("Displaying plot")
|
116 |
st.bokeh_chart(plot)
|
117 |
logger.info("Done")
|
requirements.txt
CHANGED
@@ -3,4 +3,6 @@ streamlit==0.84.1
|
|
3 |
transformers==4.8.2
|
4 |
watchdog==2.1.3
|
5 |
sentence-transformers==2.0.0
|
6 |
-
bokeh==2.2.2
|
|
|
|
|
|
3 |
transformers==4.8.2
|
4 |
watchdog==2.1.3
|
5 |
sentence-transformers==2.0.0
|
6 |
+
bokeh==2.2.2
|
7 |
+
umap-learn==0.5.1
|
8 |
+
numpy==1.20.0
|