Spaces:
Sleeping
Sleeping
File size: 18,316 Bytes
f9b9d56 574f73e 705c5b5 4875400 83ee74c 047d156 f9b9d56 047d156 4875400 047d156 4875400 047d156 760ba3d 4875400 047d156 4875400 047d156 f9b9d56 047d156 2af89cf 1fd4ab2 99d94e0 da20c1b 99d94e0 047d156 1fd4ab2 da20c1b 1fd4ab2 2af89cf da20c1b 2af89cf da20c1b 1fd4ab2 da20c1b 1fd4ab2 2af89cf 047d156 705c5b5 0997082 2af89cf 705c5b5 99d94e0 705c5b5 2af89cf 047d156 521288b 047d156 705c5b5 521288b 1fd4ab2 705c5b5 1fd4ab2 0997082 d57197f 047d156 705c5b5 7ffca43 2af89cf 2b6f16a 2af89cf 7ffca43 99d94e0 1fd4ab2 7ffca43 1fd4ab2 7ffca43 1fd4ab2 047d156 705c5b5 2b6f16a 566e2ba 0997082 705c5b5 0997082 047d156 da20c1b 566e2ba da20c1b 047d156 f2c0975 83ee74c 0997082 83ee74c 047d156 705c5b5 da20c1b 566e2ba da20c1b 0997082 1fd4ab2 566e2ba 705c5b5 7b3fa19 7ffca43 7b3fa19 047d156 1fd4ab2 760ba3d 047d156 760ba3d 1fd4ab2 047d156 63c5e29 b45e256 047d156 a3b8f2f b45e256 7ffca43 1fd4ab2 7ffca43 047d156 7ffca43 760ba3d 047d156 760ba3d 63c5e29 047d156 7ffca43 a3b8f2f 047d156 d57197f 7ffca43 63c5e29 047d156 760ba3d 047d156 1fd4ab2 047d156 760ba3d 63c5e29 047d156 1fd4ab2 7ffca43 047d156 da20c1b 7ffca43 a3b8f2f b45e256 047d156 b45e256 047d156 7ffca43 047d156 7ffca43 047d156 da20c1b 7ffca43 63c5e29 047d156 1fd4ab2 047d156 f9b9d56 b45e256 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
import gradio as gr
import os
import pandas as pd
import requests
import json
from typing import List, Tuple
import chardet
# -- LLM Client Class --
class OllamaClient:
def __init__(self, model_name: str = "phi3:latest", base_url: str = "http://localhost:11434"):
self.model_name = model_name
self.base_url = base_url
def list_models(self):
"""List all available models from Ollama server"""
try:
response = requests.get(f"{self.base_url}/api/tags")
if response.status_code == 200:
data = response.json()
return [model['name'] for model in data.get('models', [])]
return []
except Exception as e:
print(f"Error listing models: {e}")
return []
def chat_completion(self, messages, max_tokens=4000, stream=True, temperature=0.3, top_p=0.7):
# Convert messages to Ollama format
ollama_messages = []
for msg in messages:
if msg["role"] == "system":
ollama_messages.append({"role": "system", "content": msg["content"]})
elif msg["role"] in ["user", "assistant"]:
ollama_messages.append({"role": msg["role"], "content": msg["content"]})
# Prepare the request data
data = {
"model": self.model_name,
"messages": ollama_messages,
"options": {
"temperature": temperature,
"top_p": top_p,
"num_predict": max_tokens
},
"stream": stream
}
# Make the request to Ollama API
response = requests.post(
f"{self.base_url}/api/chat",
json=data,
stream=stream
)
if response.status_code != 200:
raise Exception(f"Ollama API error: {response.text}")
if stream:
for line in response.iter_lines():
if line:
decoded_line = line.decode('utf-8')
try:
chunk = json.loads(decoded_line)
if "message" in chunk and "content" in chunk["message"]:
yield {"content": chunk["message"]["content"]}
except json.JSONDecodeError:
continue
else:
result = response.json()
yield {"content": result["message"]["content"]}
# -- check content --
def analyze_file_content(content, file_type):
"""Analyze file content and return structural summary"""
if file_type in ['parquet', 'csv']:
try:
lines = content.split('\n')
header = lines[0]
columns = header.count('|') - 1 if '|' in header else len(header.split(','))
rows = len(lines) - 3
return f"π Dataset Structure: {columns} columns, {rows} data samples"
except:
return "β Dataset structure analysis failed"
lines = content.split('\n')
total_lines = len(lines)
non_empty_lines = len([line for line in lines if line.strip()])
if any(keyword in content.lower() for keyword in ['def ', 'class ', 'import ', 'function']):
functions = len([line for line in lines if 'def ' in line])
classes = len([line for line in lines if 'class ' in line])
imports = len([line for line in lines if 'import ' in line or 'from ' in line])
return f"π» Code Structure: {total_lines} lines (Functions: {functions}, Classes: {classes}, Imports: {imports})"
paragraphs = content.count('\n\n') + 1
words = len(content.split())
return f"π Document Structure: {total_lines} lines, {paragraphs} paragraphs, ~{words} words"
# -- Basic stats on content --
def get_column_stats(df, col):
stats = {
'type': str(df[col].dtype),
'missing': df[col].isna().sum(),
'unique': df[col].nunique()
}
if pd.api.types.is_numeric_dtype(df[col]):
stats.update({
'min': df[col].min(),
'max': df[col].max(),
'mean': df[col].mean()
})
else:
stats['examples'] = df[col].dropna().head(3).tolist()
return stats
# -- Identify Encoding --
def detect_file_encoding(file_path):
"""Improved encoding detection with fallback options"""
try:
with open(file_path, 'rb') as f:
rawdata = f.read(100000) # Read more data for better detection
# Try chardet first
result = chardet.detect(rawdata)
encoding = result['encoding']
confidence = result['confidence']
# If confidence is low, try some common encodings
if confidence < 0.9:
for test_encoding in ['utf-8', 'utf-16', 'latin1', 'cp1252']:
try:
rawdata.decode(test_encoding)
return test_encoding
except UnicodeDecodeError:
continue
return encoding if encoding else 'utf-8'
except Exception as e:
print(f"Encoding detection error: {e}")
return 'utf-8' # Default fallback
# -- Read file --
def read_uploaded_file(file):
if file is None:
return "", ""
try:
file_ext = os.path.splitext(file.name)[1].lower()
if file_ext == '.parquet':
df = pd.read_parquet(file.name, engine='pyarrow')
content = df.head(10).to_markdown(index=False)
return content, "parquet"
if file_ext == '.csv':
# First try to detect encoding
try:
encoding = detect_file_encoding(file.name)
# Try reading with different delimiters
delimiters = [',', ';', '\t', '|']
df = None
best_delimiter = ','
max_columns = 1
# First pass to find the best delimiter
for delimiter in delimiters:
try:
with open(file.name, 'r', encoding=encoding) as f:
first_line = f.readline()
current_columns = len(first_line.split(delimiter))
if current_columns > max_columns:
max_columns = current_columns
best_delimiter = delimiter
except:
continue
# Now read with the best found delimiter
try:
df = pd.read_csv(
file.name,
encoding=encoding,
delimiter=best_delimiter,
on_bad_lines='warn',
engine='python',
quotechar='"'
)
except:
# Fallback to pandas auto-detection
df = pd.read_csv(file.name, encoding=encoding, on_bad_lines='warn')
if df is None or len(df.columns) < 1:
return "β Could not parse CSV file - no valid columns detected", "error"
# Generate comprehensive data summary
content = "π CSV Metadata:\n"
content += f"- Rows: {len(df):,}\n"
content += f"- Columns: {len(df.columns):,}\n"
content += f"- Missing Values: {df.isna().sum().sum():,}\n\n"
content += "π Column Details:\n"
for col in df.columns:
stats = get_column_stats(df, col)
content += f"### {col}\n"
content += f"- Type: {stats['type']}\n"
content += f"- Unique: {stats['unique']}\n"
content += f"- Missing: {stats['missing']}\n"
if 'examples' in stats:
content += f"- Examples: {stats['examples']}\n"
else:
content += (
f"- Range: {stats['min']} to {stats['max']}\n"
f"- Mean: {stats['mean']:.2f}\n"
)
content += "\n"
content += "π Sample Data (First 3 Rows):\n"
content += df.head(3).to_markdown(index=False)
return content, "csv"
except Exception as e:
return f"β Error reading CSV file: {str(e)}", "error"
else:
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
for encoding in encodings:
try:
with open(file.name, 'r', encoding=encoding) as f:
content = f.read()
return content, "text"
except UnicodeDecodeError:
continue
raise UnicodeDecodeError(f"β Unable to read file with supported encodings ({', '.join(encodings)})")
except Exception as e:
return f"β Error reading file: {str(e)}", "error"
def format_history(history):
formatted_history = []
for user_msg, assistant_msg in history:
formatted_history.append({"role": "user", "content": user_msg})
if assistant_msg:
formatted_history.append({"role": "assistant", "content": assistant_msg})
return formatted_history
def chat(message,
history,
uploaded_file,
system_message="",
max_tokens=4000,
temperature=0.3,
top_p=0.9,
selected_model="phi3:latest"):
system_prefix = """
You are a AI Data Scientist designed to provide expert guidance in data analysis, machine learning, and big data technologies, suitable for a wide range of users seeking data-driven insights and solutions.
Analyze the uploaded file in depth from the following perspectives:
1. π Overall file structure and format
2. β Data Quality and completeness evaluation
3. π‘ Suggested data fixes and improvements
4. π Data characteristics, meaning and patterns
5. π Key component analysis and potential segmentations
6. π― Insights and suggested persuasive story telling
Provide detailed and structured analysis from an expert perspective, but explain in an easy-to-understand way.
Format the analysis results in Markdown and include specific examples where possible.
"""
if uploaded_file:
content, file_type = read_uploaded_file(uploaded_file)
if file_type == "error":
return "", [{"role": "user", "content": message}, {"role": "assistant", "content": content}]
file_summary = analyze_file_content(content, file_type)
if file_type in ['parquet', 'csv']:
system_message += f"\n\nFile Content:\n```markdown\n{content}\n```"
else:
system_message += f"\n\nFile Content:\n```\n{content}\n```"
if message == "Starting file analysis...":
message = f"""[Structure Analysis] {file_summary}
Please provide detailed analysis from these perspectives:
1. π Overall file structure and format
2. β Data Quality and completeness evaluation
3. π‘ Suggested data fixes and improvements
4. π Data characteristics, meaning and patterns
5. π Key component analysis and potential segmentations
6. π― Insights and suggested persuasive story telling"""
messages = [{"role": "system", "content": f"{system_prefix} {system_message}"}]
# Convert history to message format
if history is not None:
for item in history:
if isinstance(item, dict):
messages.append(item)
elif isinstance(item, (list, tuple)) and len(item) == 2:
messages.append({"role": "user", "content": item[0]})
if item[1]:
messages.append({"role": "assistant", "content": item[1]})
messages.append({"role": "user", "content": message})
try:
client = OllamaClient(model_name=selected_model)
partial_message = ""
current_history = []
for response in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = response.get('content', '')
if token:
partial_message += token
current_history = [
{"role": "user", "content": message},
{"role": "assistant", "content": partial_message}
]
yield "", current_history
except Exception as e:
error_msg = f"β Inference error: {str(e)}"
error_history = [
{"role": "user", "content": message},
{"role": "assistant", "content": error_msg}
]
yield "", error_history
css = """
footer {visibility: hidden}
"""
with gr.Blocks(theme="gstaff/xkcd",
css=css,
title="Offline Sensitive Survey Data Analysis") as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 1000px; margin: 0 auto;">
<h1 style="font-size: 3em; font-weight: 600; margin: 0.5em;">Offline Sensitive Survey Data Analysis</h1>
<h3 style="font-size: 1.2em; margin: 1em;">Leveraging your Local Ollama Inference Server</h3>
</div>
"""
)
# Store the current model in a state variable
current_model = gr.State("phi3:latest")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
height=500,
label="Chat Interface",
type="messages"
)
msg = gr.Textbox(
label="Type your message",
show_label=False,
placeholder="Ask me anything about the uploaded data file... ",
container=False
)
with gr.Row():
send = gr.Button("Send")
clear = gr.ClearButton([msg, chatbot])
with gr.Column(scale=1):
gr.Markdown("### Upload File \nSupport: CSV, Parquet files, Text")
file_upload = gr.File(
label="Upload File",
file_types=[".csv", ".parquet",".txt"],
type="filepath"
)
with gr.Accordion("Model Settings", open=False):
model_dropdown = gr.Dropdown(
label="Available Models",
choices=[],
interactive=True
)
refresh_models = gr.Button("Select Model")
with gr.Accordion("Advanced Settings βοΈ", open=False):
system_message = gr.Textbox(label="Override System Message π", value="")
max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="Max Tokens (maximum number of words for generated response)")
temperature = gr.Slider(minimum=0, maximum=1, value=0.3, label="Temperature (higher = more creative)")
top_p = gr.Slider(minimum=0, maximum=1, value=0.7, label="Top P (word choices by probability threshold)")
# Function to load available models
def load_models():
client = OllamaClient()
models = client.list_models()
return gr.Dropdown(choices=models, value=models[0] if models else "phi3:latest")
# Refresh models button click handler
refresh_models.click(
load_models,
outputs=model_dropdown
)
# Model dropdown change handler
model_dropdown.change(
lambda x: x,
inputs=model_dropdown,
outputs=current_model
)
# Load models when app starts
demo.load(
load_models,
outputs=model_dropdown
)
# Event bindings
msg.submit(
chat,
inputs=[msg, chatbot, file_upload, system_message, max_tokens, temperature, top_p, current_model],
outputs=[msg, chatbot],
queue=True
).then(
lambda: gr.update(interactive=True),
None,
[msg]
)
send.click(
chat,
inputs=[msg, chatbot, file_upload, system_message, max_tokens, temperature, top_p, current_model],
outputs=[msg, chatbot],
queue=True
).then(
lambda: gr.update(interactive=True),
None,
[msg]
)
# Auto-analysis on file upload with this hidden component
auto_analyze_trigger = gr.Textbox(value="Analyze this file", visible=False)
file_upload.change(
lambda: gr.Chatbot(value=[]), # Clear chat history
outputs=[chatbot],
queue=True
).then(
chat,
inputs=[auto_analyze_trigger, chatbot, file_upload, system_message, max_tokens, temperature, top_p, current_model],
outputs=[msg, chatbot],
queue=True
)
# Example queries
with gr.Column():
gr.Markdown("### Potential Follow-up Queries")
with gr.Row():
example_btns = [
gr.Button("Analyze open-ended responses for sentiment and recurring themes", size="lg", variant="secondary"),
gr.Button("Compare responses between different groups and identify potential segmentation or cluster analysis", size="lg", variant="secondary"),
gr.Button("Identify potential outcome variables and suggest a predicting model for it", size="lg", variant="secondary"),
gr.Button("Generate a Quarto notebook in Python to process this dataset", size="lg", variant="secondary"),
gr.Button("Generate a Rmd notebook in R to process this dataset", size="lg", variant="secondary"),
]
# Add click handlers
for btn in example_btns:
btn.click(
lambda x: x,
inputs=[gr.Textbox(value=btn.value, visible=False)],
outputs=msg
)
if __name__ == "__main__":
demo.launch() |