File size: 1,336 Bytes
93b097b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import uvicorn
from fastapi.middleware.cors import CORSMiddleware

app = FastAPI()

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Allows all origins
    allow_credentials=True,
    allow_methods=["*"],  # Allows all methods
    allow_headers=["*"],  # Allows all headers
)

# Initialize the model and tokenizer
model_name = "bigscience/mt0-base"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

class GenerationRequest(BaseModel):
    prompt: str
    max_tokens: int = 100

@app.post("/generate")
async def generate(request: GenerationRequest):
    inputs = tokenizer(request.prompt, return_tensors="pt", padding=True, truncation=True)
    
    # Move inputs to the same device as the model
    device = model.device
    inputs = {k: v.to(device) for k, v in inputs.items()}
    
    outputs = model.generate(**inputs, max_new_tokens=request.max_tokens)
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return {"generated_text": generated_text}

@app.get("/")
def home():
    return {"message": "Welcome to the Text Generation API"}