Spaces:
Running
Running
Create NLP_Transformer_Prompt_2.py
Browse files
pages/NLP_Transformer_Prompt_2.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
3 |
+
from transformers import pipeline
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
# Load pre-trained model and tokenizer
|
8 |
+
model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
|
9 |
+
model = BertForSequenceClassification.from_pretrained(model_name)
|
10 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
11 |
+
|
12 |
+
# Function to classify text
|
13 |
+
def classify_text(text):
|
14 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
15 |
+
outputs = model(**inputs)
|
16 |
+
scores = torch.nn.functional.softmax(outputs.logits, dim=1)
|
17 |
+
return scores
|
18 |
+
|
19 |
+
# Streamlit interface
|
20 |
+
st.title("NLP Transformer with PyTorch and Hugging Face")
|
21 |
+
st.header("Sentiment Analysis")
|
22 |
+
|
23 |
+
text = st.text_area("Enter text for sentiment analysis:")
|
24 |
+
|
25 |
+
if st.button("Classify"):
|
26 |
+
scores = classify_text(text).detach().numpy()[0]
|
27 |
+
labels = ["1 star", "2 stars", "3 stars", "4 stars", "5 stars"]
|
28 |
+
|
29 |
+
st.write("Classification Scores:")
|
30 |
+
for label, score in zip(labels, scores):
|
31 |
+
st.write(f"{label}: {score:.4f}")
|
32 |
+
|
33 |
+
fig, ax = plt.subplots()
|
34 |
+
ax.bar(labels, scores, color='blue')
|
35 |
+
ax.set_xlabel('Sentiment')
|
36 |
+
ax.set_ylabel('Score')
|
37 |
+
ax.set_title('Sentiment Analysis Scores')
|
38 |
+
st.pyplot(fig)
|