Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
|
5 |
+
# 1. Load a pretrained SentenceTransformer model
|
6 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
7 |
+
|
8 |
+
def clean_and_embed(text: str):
|
9 |
+
# 2. Clean: remove non-ASCII & lowercase
|
10 |
+
clean = text.encode('ascii', 'ignore').decode().lower()
|
11 |
+
|
12 |
+
# 3. Tokenize via the model’s tokenizer
|
13 |
+
tokens = model.tokenizer.tokenize(clean)
|
14 |
+
|
15 |
+
# 4. Get the sentence embedding
|
16 |
+
emb = model.encode(clean, convert_to_numpy=True)
|
17 |
+
|
18 |
+
# 5. Build a DataFrame: one row (the sentence) × embedding dims
|
19 |
+
df = pd.DataFrame(
|
20 |
+
[emb],
|
21 |
+
index=["sentence_embedding"],
|
22 |
+
columns=[f"dim_{i}" for i in range(emb.shape[0])]
|
23 |
+
)
|
24 |
+
|
25 |
+
return " ".join(tokens), df
|
26 |
+
|
27 |
+
# 6. Gradio interface
|
28 |
+
iface = gr.Interface(
|
29 |
+
fn=clean_and_embed,
|
30 |
+
inputs=gr.Textbox(lines=2, placeholder="Type your text here…"),
|
31 |
+
outputs=[
|
32 |
+
gr.Textbox(label="Tokens"),
|
33 |
+
gr.Dataframe(label="Sentence Embedding Vector")
|
34 |
+
],
|
35 |
+
title="ASCII‑Clean + SentenceTransformer",
|
36 |
+
description="Cleans input, tokenizes with a SentenceTransformer tokenizer, and shows the sentence embedding."
|
37 |
+
)
|
38 |
+
|
39 |
+
if __name__ == "__main__":
|
40 |
+
iface.launch()
|