File size: 1,174 Bytes
86ad0fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
import torch
from transformers import BertTokenizer, BertModel

# Load BERT (uncased) tokenizer & model
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased")

def preprocess(text: str):
    # remove non‑ASCII characters and lowercase
    cleaned = text.encode("ascii", "ignore").decode().lower()
    # tokenize
    inputs = tokenizer(cleaned, return_tensors="pt")
    tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
    # get embeddings
    with torch.no_grad():
        outputs = model(**inputs)
    # last_hidden_state: [1, seq_len, hidden_size] → drop batch dim
    embeddings = outputs.last_hidden_state[0].tolist()
    return tokens, embeddings

iface = gr.Interface(
    fn=preprocess,
    inputs=gr.Textbox(lines=3, placeholder="Type something…"),
    outputs=[
        gr.Dataframe(headers=["token"], label="Tokens"),
        gr.Dataframe(label="Embeddings")
    ],
    title="BERT Tokenizer + Embeddings",
    description="Cleans input, lowercases it, then shows BERT tokens & their hidden‑state vectors."
)

if __name__ == "__main__":
    iface.launch()