import gradio as gr import torch import pandas as pd from transformers import BertTokenizer, BertModel # 1. Load pretrained BERT (uncased) tokenizer & model tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') def clean_and_embed(text: str): # 2. Clean: remove non-ASCII, lowercase clean = text.encode('ascii', 'ignore').decode().lower() # 3. Tokenize + encode for PyTorch inputs = tokenizer(clean, return_tensors='pt') token_ids = inputs['input_ids'][0] tokens = tokenizer.convert_ids_to_tokens(token_ids) # 4. Get embeddings (last hidden state) with torch.no_grad(): outputs = model(**inputs) embeddings = outputs.last_hidden_state[0] # shape: (seq_len, hidden_size) emb_np = embeddings.cpu().numpy() # 5. Build a pandas DataFrame for display # Rows → tokens, Columns → embedding dimensions df = pd.DataFrame( emb_np, index=tokens, columns=[f"dim_{i}" for i in range(emb_np.shape[1])] ) # Return tokens list (as a single string) and DataFrame return " ".join(tokens), df # 6. Gradio interface iface = gr.Interface( fn=clean_and_embed, inputs=gr.Textbox(lines=2, placeholder="Type your text here..."), outputs=[ gr.Textbox(label="BERT Tokens"), gr.Dataframe(label="Token Embeddings (one row per token)") ], title="ASCII‑Cleaned → BERT Tokenizer & Embeddings", description="Enter text to strip non‑ASCII chars, lowercase it, then view BERT tokens and their embeddings." ) if __name__ == "__main__": iface.launch()