File size: 1,689 Bytes
1a7c2a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import gradio as gr
import torch
import pandas as pd
from transformers import BertTokenizer, BertModel

# 1. Load pretrained BERT (uncased) tokenizer & model
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model     = BertModel.from_pretrained('bert-base-uncased')

def clean_and_embed(text: str):
    # 2. Clean: remove non-ASCII, lowercase
    clean = text.encode('ascii', 'ignore').decode().lower()
    
    # 3. Tokenize + encode for PyTorch
    inputs = tokenizer(clean, return_tensors='pt')
    token_ids = inputs['input_ids'][0]
    tokens    = tokenizer.convert_ids_to_tokens(token_ids)
    
    # 4. Get embeddings (last hidden state)
    with torch.no_grad():
        outputs    = model(**inputs)
        embeddings = outputs.last_hidden_state[0]            # shape: (seq_len, hidden_size)
        emb_np     = embeddings.cpu().numpy()
    
    # 5. Build a pandas DataFrame for display
    #    Rows → tokens, Columns → embedding dimensions
    df = pd.DataFrame(
        emb_np,
        index=tokens,
        columns=[f"dim_{i}" for i in range(emb_np.shape[1])]
    )
    
    # Return tokens list (as a single string) and DataFrame
    return " ".join(tokens), df

# 6. Gradio interface
iface = gr.Interface(
    fn=clean_and_embed,
    inputs=gr.Textbox(lines=2, placeholder="Type your text here..."),
    outputs=[
        gr.Textbox(label="BERT Tokens"),
        gr.Dataframe(label="Token Embeddings (one row per token)")
    ],
    title="ASCII‑Cleaned → BERT Tokenizer & Embeddings",
    description="Enter text to strip non‑ASCII chars, lowercase it, then view BERT tokens and their embeddings."
)

if __name__ == "__main__":
    iface.launch()