Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import plotly.express as px
|
5 |
+
from datasets import load_dataset
|
6 |
+
import folium
|
7 |
+
from streamlit_folium import st_folium
|
8 |
+
from geopy.geocoders import Nominatim
|
9 |
+
from shadcn.ui import Card, CardContent, Button
|
10 |
+
|
11 |
+
# Initialize geolocator
|
12 |
+
geolocator = Nominatim(user_agent="geoapiExercises")
|
13 |
+
|
14 |
+
# Hugging Face Datasets
|
15 |
+
@st.cache_data
|
16 |
+
def load_data():
|
17 |
+
network_insights = load_dataset("infinite-dataset-hub/5GNetworkOptimization", split="train")
|
18 |
+
return network_insights.to_pandas()
|
19 |
+
|
20 |
+
# Load Datasets
|
21 |
+
network_insights = load_data()
|
22 |
+
|
23 |
+
# Title Section with Styling
|
24 |
+
st.markdown("""
|
25 |
+
# π **Smart Network Infrastructure Planner**
|
26 |
+
Effortlessly optimize network infrastructure while accounting for budget, signal strength, terrain challenges, and climate risks.
|
27 |
+
""")
|
28 |
+
st.sidebar.header("π§ Input Parameters")
|
29 |
+
|
30 |
+
# User Inputs from Sidebar
|
31 |
+
with st.sidebar:
|
32 |
+
budget = st.number_input("π° Total Budget (in $1000s):", min_value=10, max_value=1000, step=10)
|
33 |
+
priority_area = st.selectbox("π Priority Area:", ["Rural", "Urban", "Suburban"])
|
34 |
+
signal_threshold = st.slider("πΆ Signal Strength Threshold (dBm):", min_value=-120, max_value=-30, value=-80)
|
35 |
+
terrain_weight = st.slider("π Terrain Difficulty Weight:", min_value=0.0, max_value=1.0, value=0.5)
|
36 |
+
cost_weight = st.slider("π΅ Cost Weight:", min_value=0.0, max_value=1.0, value=0.5)
|
37 |
+
climate_risk_weight = st.slider("π‘οΈ Climate Risk Weight:", min_value=0.0, max_value=1.0, value=0.5)
|
38 |
+
include_human_readable = st.checkbox("πΊοΈ Include Human-Readable Info", value=True)
|
39 |
+
|
40 |
+
# Tabs for Data Display and Analysis
|
41 |
+
st.markdown("## π Insights & Recommendations")
|
42 |
+
tabs = st.tabs(["Terrain Analysis", "Filtered Data", "Geographical Map"])
|
43 |
+
|
44 |
+
# Simulate Terrain and Climate Risk Data
|
45 |
+
def generate_terrain_data():
|
46 |
+
np.random.seed(42)
|
47 |
+
data = {
|
48 |
+
"Region": [f"Region-{i}" for i in range(1, 11)],
|
49 |
+
"Latitude": np.random.uniform(30.0, 50.0, size=10),
|
50 |
+
"Longitude": np.random.uniform(-120.0, -70.0, size=10),
|
51 |
+
"Terrain Difficulty (0-10)": np.random.randint(1, 10, size=10),
|
52 |
+
"Signal Strength (dBm)": np.random.randint(-120, -30, size=10),
|
53 |
+
"Cost ($1000s)": np.random.randint(50, 200, size=10),
|
54 |
+
"Priority Area": np.random.choice(["Rural", "Urban", "Suburban"], size=10),
|
55 |
+
"Climate Risk (0-10)": np.random.randint(0, 10, size=10),
|
56 |
+
"Description": [
|
57 |
+
"Flat area with minimal obstacles",
|
58 |
+
"Hilly terrain, moderate construction difficulty",
|
59 |
+
"Dense urban area with high costs",
|
60 |
+
"Suburban area, balanced terrain",
|
61 |
+
"Mountainous region, challenging setup",
|
62 |
+
"Remote rural area, sparse population",
|
63 |
+
"Coastal area, potential for high signal interference",
|
64 |
+
"Industrial zone, requires robust infrastructure",
|
65 |
+
"Dense forest region, significant signal attenuation",
|
66 |
+
"Open plains, optimal for cost-effective deployment"
|
67 |
+
]
|
68 |
+
}
|
69 |
+
return pd.DataFrame(data)
|
70 |
+
|
71 |
+
terrain_data = generate_terrain_data()
|
72 |
+
|
73 |
+
# Reverse Geocoding Function
|
74 |
+
def get_location_name(lat, lon):
|
75 |
+
try:
|
76 |
+
location = geolocator.reverse((lat, lon), exactly_one=True)
|
77 |
+
return location.address if location else "Unknown Location"
|
78 |
+
except Exception as e:
|
79 |
+
return "Error: Unable to fetch location"
|
80 |
+
|
81 |
+
# Add Location Name to Filtered Data
|
82 |
+
if include_human_readable:
|
83 |
+
filtered_data = terrain_data[
|
84 |
+
(terrain_data["Signal Strength (dBm)"] >= signal_threshold) &
|
85 |
+
(terrain_data["Cost ($1000s)"] <= budget) &
|
86 |
+
(terrain_data["Priority Area"] == priority_area)
|
87 |
+
]
|
88 |
+
filtered_data["Location Name"] = filtered_data.apply(
|
89 |
+
lambda row: get_location_name(row["Latitude"], row["Longitude"]), axis=1
|
90 |
+
)
|
91 |
+
else:
|
92 |
+
filtered_data = terrain_data[
|
93 |
+
(terrain_data["Signal Strength (dBm)"] >= signal_threshold) &
|
94 |
+
(terrain_data["Cost ($1000s)"] <= budget) &
|
95 |
+
(terrain_data["Priority Area"] == priority_area)
|
96 |
+
]
|
97 |
+
|
98 |
+
# Add Composite Score for Ranking
|
99 |
+
filtered_data["Composite Score"] = (
|
100 |
+
(1 - terrain_weight) * filtered_data["Signal Strength (dBm)"] +
|
101 |
+
(terrain_weight) * (10 - filtered_data["Terrain Difficulty (0-10)"]) -
|
102 |
+
(cost_weight) * filtered_data["Cost ($1000s)"] -
|
103 |
+
(climate_risk_weight) * filtered_data["Climate Risk (0-10)"]
|
104 |
+
)
|
105 |
+
|
106 |
+
# Display Filtered Data in Tab
|
107 |
+
with tabs[1]:
|
108 |
+
st.subheader("Filtered Terrain Data")
|
109 |
+
columns_to_display = [
|
110 |
+
"Region", "Location Name", "Priority Area", "Signal Strength (dBm)",
|
111 |
+
"Cost ($1000s)", "Terrain Difficulty (0-10)", "Climate Risk (0-10)", "Description", "Composite Score"
|
112 |
+
] if include_human_readable else [
|
113 |
+
"Region", "Priority Area", "Signal Strength (dBm)", "Cost ($1000s)", "Terrain Difficulty (0-10)", "Climate Risk (0-10)", "Description", "Composite Score"
|
114 |
+
]
|
115 |
+
st.dataframe(filtered_data[columns_to_display])
|
116 |
+
|
117 |
+
# Map Visualization in Tab
|
118 |
+
with tabs[2]:
|
119 |
+
st.subheader("Geographical Map of Regions")
|
120 |
+
if not filtered_data.empty:
|
121 |
+
map_center = [filtered_data["Latitude"].mean(), filtered_data["Longitude"].mean()]
|
122 |
+
region_map = folium.Map(location=map_center, zoom_start=6)
|
123 |
+
|
124 |
+
for _, row in filtered_data.iterrows():
|
125 |
+
folium.Marker(
|
126 |
+
location=[row["Latitude"], row["Longitude"]],
|
127 |
+
popup=(
|
128 |
+
f"<b>Region:</b> {row['Region']}<br>"
|
129 |
+
f"<b>Location:</b> {row.get('Location Name', 'N/A')}<br>"
|
130 |
+
f"<b>Description:</b> {row['Description']}<br>"
|
131 |
+
f"<b>Signal Strength:</b> {row['Signal Strength (dBm)']} dBm<br>"
|
132 |
+
f"<b>Cost:</b> ${row['Cost ($1000s)']}k<br>"
|
133 |
+
f"<b>Terrain Difficulty:</b> {row['Terrain Difficulty (0-10)']}<br>"
|
134 |
+
f"<b>Climate Risk:</b> {row['Climate Risk (0-10)']}"
|
135 |
+
),
|
136 |
+
icon=folium.Icon(color="blue", icon="info-sign")
|
137 |
+
).add_to(region_map)
|
138 |
+
|
139 |
+
st_folium(region_map, width=700, height=500)
|
140 |
+
else:
|
141 |
+
st.write("No regions match the selected criteria.")
|
142 |
+
|
143 |
+
# Visualization Tab
|
144 |
+
with tabs[0]:
|
145 |
+
st.subheader("Signal Strength vs. Cost")
|
146 |
+
fig = px.scatter(
|
147 |
+
filtered_data,
|
148 |
+
x="Cost ($1000s)",
|
149 |
+
y="Signal Strength (dBm)",
|
150 |
+
size="Terrain Difficulty (0-10)",
|
151 |
+
color="Region",
|
152 |
+
title="Signal Strength vs. Cost",
|
153 |
+
labels={
|
154 |
+
"Cost ($1000s)": "Cost in $1000s",
|
155 |
+
"Signal Strength (dBm)": "Signal Strength in dBm",
|
156 |
+
},
|
157 |
+
)
|
158 |
+
st.plotly_chart(fig)
|
159 |
+
|
160 |
+
# Recommendation Engine
|
161 |
+
st.header("β¨ Deployment Recommendations")
|
162 |
+
|
163 |
+
def recommend_deployment(data):
|
164 |
+
if data.empty:
|
165 |
+
return "No viable deployment regions within the specified parameters."
|
166 |
+
best_region = data.loc[data["Composite Score"].idxmax()]
|
167 |
+
return f"Recommended Region: {best_region['Region']} with Composite Score: {best_region['Composite Score']:.2f}, Signal Strength: {best_region['Signal Strength (dBm)']} dBm, Terrain Difficulty: {best_region['Terrain Difficulty (0-10)']}, Climate Risk: {best_region['Climate Risk (0-10)']}, and Estimated Cost: ${best_region['Cost ($1000s)']}k\nDescription: {best_region['Description']}\nLocation Name: {best_region.get('Location Name', 'N/A')}"
|
168 |
+
|
169 |
+
recommendation = recommend_deployment(filtered_data)
|
170 |
+
|
171 |
+
# Display Recommendation in a Card
|
172 |
+
st.markdown("### π Final Recommendation")
|
173 |
+
with st.container():
|
174 |
+
st.markdown(f"**{recommendation}**")
|
175 |
+
|
176 |
+
# Footer
|
177 |
+
st.sidebar.markdown("---")
|
178 |
+
st.sidebar.markdown(
|
179 |
+
"**Developed for Hackathon using Hugging Face Infinite Dataset Hub**\n\n[Visit Hugging Face](https://huggingface.co)")
|