Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import plotly.express as px
|
5 |
+
from transformers import pipeline
|
6 |
+
from datasets import load_dataset
|
7 |
+
|
8 |
+
# Hugging Face Datasets
|
9 |
+
@st.cache_data
|
10 |
+
|
11 |
+
def load_data():
|
12 |
+
network_insights = load_dataset("huggingface/infrastructure-insights", split="train")
|
13 |
+
broadband_forecast = load_dataset("huggingface/broadband-access-forecast", split="train")
|
14 |
+
return network_insights.to_pandas(), broadband_forecast.to_pandas()
|
15 |
+
|
16 |
+
# Load Datasets
|
17 |
+
network_insights, broadband_forecast = load_data()
|
18 |
+
|
19 |
+
# Title
|
20 |
+
st.title("Smart Network Infrastructure Planner")
|
21 |
+
st.sidebar.header("Input Parameters")
|
22 |
+
|
23 |
+
# User Inputs from Sidebar
|
24 |
+
budget = st.sidebar.number_input("Total Budget (in $1000s):", min_value=10, max_value=1000, step=10)
|
25 |
+
priority_area = st.sidebar.selectbox("Priority Area:", ["Rural", "Urban", "Suburban"])
|
26 |
+
signal_threshold = st.sidebar.slider("Signal Strength Threshold (dBm):", min_value=-120, max_value=-30, value=-80)
|
27 |
+
|
28 |
+
# Display Dataset Options
|
29 |
+
data_to_view = st.sidebar.selectbox("Select Dataset to View:", ["Network Insights", "Broadband Forecast"])
|
30 |
+
|
31 |
+
# Display Selected Dataset
|
32 |
+
if data_to_view == "Network Insights":
|
33 |
+
st.subheader("Network Insights Dataset")
|
34 |
+
st.dataframe(network_insights)
|
35 |
+
else:
|
36 |
+
st.subheader("Broadband Forecast Dataset")
|
37 |
+
st.dataframe(broadband_forecast)
|
38 |
+
|
39 |
+
# Terrain and Connectivity Analysis Section
|
40 |
+
st.header("Terrain and Connectivity Analysis")
|
41 |
+
|
42 |
+
# Simulate Terrain Data
|
43 |
+
def generate_terrain_data():
|
44 |
+
np.random.seed(42)
|
45 |
+
data = {
|
46 |
+
"Region": [f"Region-{i}" for i in range(1, 11)],
|
47 |
+
"Terrain Difficulty (0-10)": np.random.randint(1, 10, size=10),
|
48 |
+
"Signal Strength (dBm)": np.random.randint(-120, -30, size=10),
|
49 |
+
"Cost ($1000s)": np.random.randint(50, 200, size=10),
|
50 |
+
}
|
51 |
+
return pd.DataFrame(data)
|
52 |
+
|
53 |
+
terrain_data = generate_terrain_data()
|
54 |
+
|
55 |
+
# Filter Data Based on User Inputs
|
56 |
+
filtered_data = terrain_data[
|
57 |
+
(terrain_data["Signal Strength (dBm)"] >= signal_threshold) & (terrain_data["Cost ($1000s)"] <= budget)
|
58 |
+
]
|
59 |
+
|
60 |
+
# Display Filtered Results
|
61 |
+
st.write("Filtered Results Based on Inputs:")
|
62 |
+
st.dataframe(filtered_data)
|
63 |
+
|
64 |
+
# Visualization
|
65 |
+
fig = px.scatter(
|
66 |
+
filtered_data,
|
67 |
+
x="Cost ($1000s)",
|
68 |
+
y="Signal Strength (dBm)",
|
69 |
+
size="Terrain Difficulty (0-10)",
|
70 |
+
color="Region",
|
71 |
+
title="Signal Strength vs. Cost",
|
72 |
+
labels={
|
73 |
+
"Cost ($1000s)": "Cost in $1000s",
|
74 |
+
"Signal Strength (dBm)": "Signal Strength in dBm",
|
75 |
+
},
|
76 |
+
)
|
77 |
+
st.plotly_chart(fig)
|
78 |
+
|
79 |
+
# Recommendation Engine
|
80 |
+
st.header("Deployment Recommendations")
|
81 |
+
|
82 |
+
def recommend_deployment(data):
|
83 |
+
if data.empty:
|
84 |
+
return "No viable deployment regions within the specified parameters."
|
85 |
+
best_region = data.loc[data["Signal Strength (dBm)"].idxmax()]
|
86 |
+
return f"Recommended Region: {best_region['Region']} with Signal Strength: {best_region['Signal Strength (dBm)']} dBm and Estimated Cost: ${best_region['Cost ($1000s)']}k"
|
87 |
+
|
88 |
+
recommendation = recommend_deployment(filtered_data)
|
89 |
+
st.subheader(recommendation)
|
90 |
+
|
91 |
+
# Footer
|
92 |
+
st.sidebar.markdown("---")
|
93 |
+
st.sidebar.markdown(
|
94 |
+
"**Developed for Hackathon using Hugging Face Infinite Dataset Hub**\n\n[Visit Hugging Face](https://huggingface.co)")
|