eaglelandsonce commited on
Commit
b61df43
·
verified ·
1 Parent(s): 00d6f05

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +94 -0
app.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import plotly.express as px
5
+ from transformers import pipeline
6
+ from datasets import load_dataset
7
+
8
+ # Hugging Face Datasets
9
+ @st.cache_data
10
+
11
+ def load_data():
12
+ network_insights = load_dataset("huggingface/infrastructure-insights", split="train")
13
+ broadband_forecast = load_dataset("huggingface/broadband-access-forecast", split="train")
14
+ return network_insights.to_pandas(), broadband_forecast.to_pandas()
15
+
16
+ # Load Datasets
17
+ network_insights, broadband_forecast = load_data()
18
+
19
+ # Title
20
+ st.title("Smart Network Infrastructure Planner")
21
+ st.sidebar.header("Input Parameters")
22
+
23
+ # User Inputs from Sidebar
24
+ budget = st.sidebar.number_input("Total Budget (in $1000s):", min_value=10, max_value=1000, step=10)
25
+ priority_area = st.sidebar.selectbox("Priority Area:", ["Rural", "Urban", "Suburban"])
26
+ signal_threshold = st.sidebar.slider("Signal Strength Threshold (dBm):", min_value=-120, max_value=-30, value=-80)
27
+
28
+ # Display Dataset Options
29
+ data_to_view = st.sidebar.selectbox("Select Dataset to View:", ["Network Insights", "Broadband Forecast"])
30
+
31
+ # Display Selected Dataset
32
+ if data_to_view == "Network Insights":
33
+ st.subheader("Network Insights Dataset")
34
+ st.dataframe(network_insights)
35
+ else:
36
+ st.subheader("Broadband Forecast Dataset")
37
+ st.dataframe(broadband_forecast)
38
+
39
+ # Terrain and Connectivity Analysis Section
40
+ st.header("Terrain and Connectivity Analysis")
41
+
42
+ # Simulate Terrain Data
43
+ def generate_terrain_data():
44
+ np.random.seed(42)
45
+ data = {
46
+ "Region": [f"Region-{i}" for i in range(1, 11)],
47
+ "Terrain Difficulty (0-10)": np.random.randint(1, 10, size=10),
48
+ "Signal Strength (dBm)": np.random.randint(-120, -30, size=10),
49
+ "Cost ($1000s)": np.random.randint(50, 200, size=10),
50
+ }
51
+ return pd.DataFrame(data)
52
+
53
+ terrain_data = generate_terrain_data()
54
+
55
+ # Filter Data Based on User Inputs
56
+ filtered_data = terrain_data[
57
+ (terrain_data["Signal Strength (dBm)"] >= signal_threshold) & (terrain_data["Cost ($1000s)"] <= budget)
58
+ ]
59
+
60
+ # Display Filtered Results
61
+ st.write("Filtered Results Based on Inputs:")
62
+ st.dataframe(filtered_data)
63
+
64
+ # Visualization
65
+ fig = px.scatter(
66
+ filtered_data,
67
+ x="Cost ($1000s)",
68
+ y="Signal Strength (dBm)",
69
+ size="Terrain Difficulty (0-10)",
70
+ color="Region",
71
+ title="Signal Strength vs. Cost",
72
+ labels={
73
+ "Cost ($1000s)": "Cost in $1000s",
74
+ "Signal Strength (dBm)": "Signal Strength in dBm",
75
+ },
76
+ )
77
+ st.plotly_chart(fig)
78
+
79
+ # Recommendation Engine
80
+ st.header("Deployment Recommendations")
81
+
82
+ def recommend_deployment(data):
83
+ if data.empty:
84
+ return "No viable deployment regions within the specified parameters."
85
+ best_region = data.loc[data["Signal Strength (dBm)"].idxmax()]
86
+ return f"Recommended Region: {best_region['Region']} with Signal Strength: {best_region['Signal Strength (dBm)']} dBm and Estimated Cost: ${best_region['Cost ($1000s)']}k"
87
+
88
+ recommendation = recommend_deployment(filtered_data)
89
+ st.subheader(recommendation)
90
+
91
+ # Footer
92
+ st.sidebar.markdown("---")
93
+ st.sidebar.markdown(
94
+ "**Developed for Hackathon using Hugging Face Infinite Dataset Hub**\n\n[Visit Hugging Face](https://huggingface.co)")