Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -22,14 +22,11 @@ st.sidebar.header("Input Parameters")
|
|
22 |
budget = st.sidebar.number_input("Total Budget (in $1000s):", min_value=10, max_value=1000, step=10)
|
23 |
priority_area = st.sidebar.selectbox("Priority Area:", ["Rural", "Urban", "Suburban"])
|
24 |
signal_threshold = st.sidebar.slider("Signal Strength Threshold (dBm):", min_value=-120, max_value=-30, value=-80)
|
|
|
|
|
25 |
|
26 |
# Display Dataset Options
|
27 |
-
data_to_view = st.sidebar.selectbox("Select Dataset to View:", ["Network Insights"])
|
28 |
-
|
29 |
-
# Display Selected Dataset
|
30 |
-
if data_to_view == "Network Insights":
|
31 |
-
st.subheader("Network Insights Dataset")
|
32 |
-
st.dataframe(network_insights)
|
33 |
|
34 |
# Terrain and Connectivity Analysis Section
|
35 |
st.header("Terrain and Connectivity Analysis")
|
@@ -42,6 +39,7 @@ def generate_terrain_data():
|
|
42 |
"Terrain Difficulty (0-10)": np.random.randint(1, 10, size=10),
|
43 |
"Signal Strength (dBm)": np.random.randint(-120, -30, size=10),
|
44 |
"Cost ($1000s)": np.random.randint(50, 200, size=10),
|
|
|
45 |
}
|
46 |
return pd.DataFrame(data)
|
47 |
|
@@ -49,12 +47,25 @@ terrain_data = generate_terrain_data()
|
|
49 |
|
50 |
# Filter Data Based on User Inputs
|
51 |
filtered_data = terrain_data[
|
52 |
-
(terrain_data["Signal Strength (dBm)"] >= signal_threshold) &
|
|
|
|
|
53 |
]
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# Visualization
|
60 |
fig = px.scatter(
|
@@ -77,8 +88,8 @@ st.header("Deployment Recommendations")
|
|
77 |
def recommend_deployment(data):
|
78 |
if data.empty:
|
79 |
return "No viable deployment regions within the specified parameters."
|
80 |
-
best_region = data.loc[data["
|
81 |
-
return f"Recommended Region: {best_region['Region']} with Signal Strength: {best_region['Signal Strength (dBm)']} dBm and Estimated Cost: ${best_region['Cost ($1000s)']}k"
|
82 |
|
83 |
recommendation = recommend_deployment(filtered_data)
|
84 |
st.subheader(recommendation)
|
|
|
22 |
budget = st.sidebar.number_input("Total Budget (in $1000s):", min_value=10, max_value=1000, step=10)
|
23 |
priority_area = st.sidebar.selectbox("Priority Area:", ["Rural", "Urban", "Suburban"])
|
24 |
signal_threshold = st.sidebar.slider("Signal Strength Threshold (dBm):", min_value=-120, max_value=-30, value=-80)
|
25 |
+
terrain_weight = st.sidebar.slider("Terrain Difficulty Weight:", min_value=0.0, max_value=1.0, value=0.5)
|
26 |
+
cost_weight = st.sidebar.slider("Cost Weight:", min_value=0.0, max_value=1.0, value=0.5)
|
27 |
|
28 |
# Display Dataset Options
|
29 |
+
data_to_view = st.sidebar.selectbox("Select Dataset to View:", ["Network Insights", "Filtered Terrain Data"])
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Terrain and Connectivity Analysis Section
|
32 |
st.header("Terrain and Connectivity Analysis")
|
|
|
39 |
"Terrain Difficulty (0-10)": np.random.randint(1, 10, size=10),
|
40 |
"Signal Strength (dBm)": np.random.randint(-120, -30, size=10),
|
41 |
"Cost ($1000s)": np.random.randint(50, 200, size=10),
|
42 |
+
"Priority Area": np.random.choice(["Rural", "Urban", "Suburban"], size=10)
|
43 |
}
|
44 |
return pd.DataFrame(data)
|
45 |
|
|
|
47 |
|
48 |
# Filter Data Based on User Inputs
|
49 |
filtered_data = terrain_data[
|
50 |
+
(terrain_data["Signal Strength (dBm)"] >= signal_threshold) &
|
51 |
+
(terrain_data["Cost ($1000s)"] <= budget) &
|
52 |
+
(terrain_data["Priority Area"] == priority_area)
|
53 |
]
|
54 |
|
55 |
+
# Add Composite Score for Ranking
|
56 |
+
filtered_data["Composite Score"] = (
|
57 |
+
(1 - terrain_weight) * filtered_data["Signal Strength (dBm)"] +
|
58 |
+
(terrain_weight) * (10 - filtered_data["Terrain Difficulty (0-10)"]) -
|
59 |
+
(cost_weight) * filtered_data["Cost ($1000s)"]
|
60 |
+
)
|
61 |
+
|
62 |
+
# Display Selected Dataset
|
63 |
+
if data_to_view == "Network Insights":
|
64 |
+
st.subheader("Network Insights Dataset")
|
65 |
+
st.dataframe(network_insights)
|
66 |
+
elif data_to_view == "Filtered Terrain Data":
|
67 |
+
st.subheader("Filtered Terrain Data")
|
68 |
+
st.dataframe(filtered_data)
|
69 |
|
70 |
# Visualization
|
71 |
fig = px.scatter(
|
|
|
88 |
def recommend_deployment(data):
|
89 |
if data.empty:
|
90 |
return "No viable deployment regions within the specified parameters."
|
91 |
+
best_region = data.loc[data["Composite Score"].idxmax()]
|
92 |
+
return f"Recommended Region: {best_region['Region']} with Composite Score: {best_region['Composite Score']:.2f}, Signal Strength: {best_region['Signal Strength (dBm)']} dBm, Terrain Difficulty: {best_region['Terrain Difficulty (0-10)']}, and Estimated Cost: ${best_region['Cost ($1000s)']}k"
|
93 |
|
94 |
recommendation = recommend_deployment(filtered_data)
|
95 |
st.subheader(recommendation)
|