eagle0504 commited on
Commit
568da15
·
1 Parent(s): 820b253

name updated

Browse files
Files changed (1) hide show
  1. app.py +14 -2
app.py CHANGED
@@ -2,6 +2,7 @@ import base64
2
  import io
3
  import json
4
  import os
 
5
  from typing import Any, Dict, List
6
 
7
  import chromadb
@@ -120,7 +121,7 @@ def main():
120
  if api_key:
121
  # Make API call
122
  st.success("Running Gemini!")
123
- with st.spinner('Wait for it...'):
124
  response = call_gemini_api(image_base64, api_key)
125
 
126
  with st.expander("Raw output from Gemini"):
@@ -221,11 +222,22 @@ def main():
221
  token_split_texts += token_splitter.split_text(text)
222
  st.success("Tokenized successfully.")
223
 
 
 
 
 
 
 
 
 
 
 
 
224
  # Add to vector database
225
  embedding_function = SentenceTransformerEmbeddingFunction()
226
  chroma_client = chromadb.Client()
227
  chroma_collection = chroma_client.create_collection(
228
- "tmp", embedding_function=embedding_function
229
  )
230
  ids = [str(i) for i in range(len(token_split_texts))]
231
  chroma_collection.add(ids=ids, documents=token_split_texts)
 
2
  import io
3
  import json
4
  import os
5
+ import string
6
  from typing import Any, Dict, List
7
 
8
  import chromadb
 
121
  if api_key:
122
  # Make API call
123
  st.success("Running Gemini!")
124
+ with st.spinner("Wait for it..."):
125
  response = call_gemini_api(image_base64, api_key)
126
 
127
  with st.expander("Raw output from Gemini"):
 
222
  token_split_texts += token_splitter.split_text(text)
223
  st.success("Tokenized successfully.")
224
 
225
+ # Generate a random number between 1 billion and 10 billion.
226
+ random_number: int = np.random.randint(low=1e9, high=1e10)
227
+
228
+ # Generate a random string consisting of 10 uppercase letters and digits.
229
+ random_string: str = "".join(
230
+ np.random.choice(list(string.ascii_uppercase + string.digits), size=10)
231
+ )
232
+
233
+ # Combine the random number and random string into one identifier.
234
+ combined_string: str = f"{random_number}{random_string}"
235
+
236
  # Add to vector database
237
  embedding_function = SentenceTransformerEmbeddingFunction()
238
  chroma_client = chromadb.Client()
239
  chroma_collection = chroma_client.create_collection(
240
+ combined_string, embedding_function=embedding_function
241
  )
242
  ids = [str(i) for i in range(len(token_split_texts))]
243
  chroma_collection.add(ids=ids, documents=token_split_texts)