#!/usr/bin/env python3 """ app.py – Quranic Data Training Pipeline Endpoint for T4 Medium ---------------------------------------------------------------- Updated for T4 medium (8 vCores, 30 GB RAM, 16 GB VRAM) with FP16 training, checkpoint saving with download link, and enhanced error handling. """ import json import logging import os import traceback import gc import time import psutil import math import shutil from datetime import datetime from typing import Dict, List, Optional from dataclasses import dataclass, asdict import torch torch.set_num_threads(8) from torch.utils.data import Dataset from transformers import ( AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling, __version__ as transformers_version ) from threading import Lock from accelerate import Accelerator import gradio as gr import spaces # Set an environment variable to help mitigate CUDA allocator fragmentation issues. os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" # Updated version requirements MIN_TRANSFORMERS_VERSION = "4.45.0" if tuple(map(int, transformers_version.split("."))) < tuple(map(int, MIN_TRANSFORMERS_VERSION.split("."))): logging.warning(f"Transformers version {transformers_version} detected. Please upgrade to at least {MIN_TRANSFORMERS_VERSION}") logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler('pipeline.log'), logging.StreamHandler() ] ) logger = logging.getLogger(__name__) def manage_memory(threshold_percent: int = 90, min_available_mb: int = 500, sleep_duration: int = 10): vm = psutil.virtual_memory() used_percent = vm.percent available_mb = vm.available / (1024 * 1024) logger.info(f"Memory usage: {used_percent}% used, {available_mb:.2f} MB available") if used_percent > threshold_percent or available_mb < min_available_mb: logger.warning("High memory usage detected, forcing garbage collection and sleeping...") gc.collect() time.sleep(sleep_duration) def manage_gpu_resources(sleep_duration: int = 5): if torch.cuda.is_available(): allocated = torch.cuda.memory_allocated() / (1024 * 1024) cached = torch.cuda.memory_reserved() / (1024 * 1024) logger.info(f"GPU Memory Allocated: {allocated:.2f} MB, Reserved: {cached:.2f} MB") torch.cuda.empty_cache() time.sleep(sleep_duration) def zip_checkpoint(checkpoint_dir: str) -> str: zip_file = checkpoint_dir + ".zip" if os.path.exists(zip_file): os.remove(zip_file) shutil.make_archive(checkpoint_dir, 'zip', checkpoint_dir) return os.path.basename(zip_file) @dataclass class WordAnalysis: arabic: str translation: str position: str morphology: Dict features: List[str] root: str location: str metadata: Dict @dataclass class VerseData: chapter: int verse: int arabic_text: str translation: str words: List[WordAnalysis] metadata: Dict class QuranicDataset(Dataset): def __init__(self, processed_data: List[Dict], tokenizer): self.examples = [] self.tokenizer = tokenizer for verse_data in processed_data: self.examples.extend(self._create_training_examples(verse_data)) def _create_training_examples(self, verse_data: Dict) -> List[Dict]: examples = [] text_block = ( f"[VERSE {verse_data['chapter']}:{verse_data['verse']}]\n" f"Arabic: {verse_data['arabic_text']}\n" f"Translation: {verse_data['translation']}\n" "Morphological Analysis:\n" ) for word in verse_data['words']: text_block += ( f"[WORD] {word['arabic']}\n" f"Root: {word['root']}\n" f"Features: {', '.join(word['features'])}\n" ) examples.append(self._format_example(text_block)) return examples def _format_example(self, text: str) -> Dict: encodings = self.tokenizer( text, truncation=True, max_length=64, padding="max_length", return_tensors="pt" ) return { "input_ids": encodings["input_ids"][0].cpu(), "attention_mask": encodings["attention_mask"][0].cpu() } def __len__(self): return len(self.examples) def __getitem__(self, idx): return self.examples[idx] class QuranicDataProcessor: def __init__(self, source_dir: str, output_dir: str): self.source_dir = source_dir self.output_dir = output_dir self.morphological_data: Dict[str, Dict] = {} self.word_by_word_data: Dict[str, List[str]] = {} self.translation_data: Dict[str, str] = {} self.processing_lock = Lock() os.makedirs(output_dir, exist_ok=True) os.makedirs(os.path.join(output_dir, 'json'), exist_ok=True) os.makedirs(os.path.join(output_dir, 'txt'), exist_ok=True) os.makedirs(os.path.join(output_dir, 'checkpoints'), exist_ok=True) logger.info(f"Initialized processor with source dir: {source_dir}") def load_source_files(self) -> bool: try: logger.info("Loading morphological data...") morph_path = os.path.join(self.source_dir, 'quranic-corpus-morphology-0.4.txt') with open(morph_path, 'r', encoding='utf-8') as f: next(f) for line in f: if line.strip() and not line.startswith('#'): parts = line.strip().split('\t') if len(parts) >= 4: location = parts[0].strip('()') self.morphological_data[location] = { 'form': parts[1], 'tag': parts[2], 'features': parts[3] } logger.info(f"Loaded {len(self.morphological_data)} morphological entries") logger.info("Loading translation data...") trans_path = os.path.join(self.source_dir, 'en.sample.quran-maududi.txt') with open(trans_path, 'r', encoding='utf-8') as f: next(f) for line in f: if line.strip(): parts = line.strip().split('|') if len(parts) >= 3: key = f"{parts[0]}:{parts[1]}" self.translation_data[key] = parts[2].strip() logger.info(f"Loaded {len(self.translation_data)} verse translations") logger.info("Loading word-by-word data...") word_path = os.path.join(self.source_dir, 'en.w4w.qurandev.txt') with open(word_path, 'r', encoding='utf-8-sig') as f: lines = [line.strip() for line in f if line.strip()] sorted_keys = sorted(self.translation_data.keys(), key=lambda x: (int(x.split(':')[0]), int(x.split(':')[1]))) if len(lines) != len(sorted_keys): logger.warning("Mismatch between word-by-word file and translation data") for i, verse_key in enumerate(sorted_keys): if i < len(lines): words = [w.strip() for w in lines[i].split('|') if w.strip()] self.word_by_word_data[verse_key] = words logger.info(f"Loaded word-by-word data for {len(self.word_by_word_data)} verses") return True except Exception as e: logger.error(f"Error loading source files: {str(e)}") logger.error(traceback.format_exc()) return False def process_verse(self, chapter: int, verse: int) -> Optional[VerseData]: try: verse_ref = f"{chapter}:{verse}" logger.info(f"Processing verse {verse_ref}") translation = self.translation_data.get(verse_ref) if not translation: logger.warning(f"No translation for verse {verse_ref}") return None verse_word_list = self.word_by_word_data.get(verse_ref, []) if not verse_word_list: logger.warning(f"No word-by-word data for verse {verse_ref}") return None verse_words: List[WordAnalysis] = [] arabic_text = "" for pos in range(1, len(verse_word_list) + 1): pattern = f"{chapter}:{verse}:{pos}:" matching_entries = [data for loc, data in self.morphological_data.items() if loc.startswith(pattern)] if not matching_entries: logger.debug(f"No morphological data for {pattern}") continue combined_form = " ".join(entry['form'] for entry in matching_entries) combined_features = [] root = "" for entry in matching_entries: features = entry['features'].split('|') combined_features.extend(features) if not root: for f in features: if 'ROOT:' in f: root = f.split('ROOT:')[1] break word_translation = verse_word_list[pos - 1] word = WordAnalysis( arabic=combined_form, translation=word_translation, position=str(pos), morphology=matching_entries[0], features=combined_features, root=root, location=f"{chapter}:{verse}:{pos}", metadata={} ) verse_words.append(word) arabic_text += f" {combined_form}" verse_data = VerseData( chapter=chapter, verse=verse, arabic_text=arabic_text.strip(), translation=translation, words=verse_words, metadata={ "processed_timestamp": datetime.now().isoformat(), "word_count": len(verse_words) } ) self._save_verse_data(verse_data) return verse_data except Exception as e: logger.error(f"Error processing verse {chapter}:{verse}: {str(e)}") logger.error(traceback.format_exc()) return None def _save_verse_data(self, verse_data: VerseData): try: verse_ref = f"{verse_data.chapter}:{verse_data.verse}" json_path = os.path.join(self.output_dir, 'json', f'verse_{verse_ref.replace(":", "_")}.json') with open(json_path, 'w', encoding='utf-8') as f: json.dump(asdict(verse_data), f, ensure_ascii=False, indent=2) txt_path = os.path.join(self.output_dir, 'txt', f'verse_{verse_ref.replace(":", "_")}.txt') with open(txt_path, 'w', encoding='utf-8') as f: f.write(f"=== Verse {verse_ref} ===\n\n") f.write(f"Arabic Text:\n{verse_data.arabic_text}\n\n") f.write(f"Translation:\n{verse_data.translation}\n\n") f.write("Word Analysis:\n") for i, word in enumerate(verse_data.words, 1): f.write(f"\nWord {i}:\n") f.write(f" Arabic: {word.arabic}\n") f.write(f" Translation: {word.translation}\n") f.write(f" Root: {word.root}\n") f.write(" Features:\n") for feature in word.features: f.write(f" - {feature}\n") f.write("\n") logger.info(f"Saved verse data to {json_path} and {txt_path}") except Exception as e: logger.error(f"Error saving verse data: {str(e)}") logger.error(traceback.format_exc()) class QuranicModelTrainer: def __init__(self, model_name: str = "google/gemma-2-2b", processed_data_dir: str = "processed_data", checkpoint_dir: str = "checkpoints"): self.processed_data_dir = processed_data_dir self.checkpoint_dir = checkpoint_dir self.accelerator = Accelerator() logger.info("Initializing Accelerator...") self.tokenizer = AutoTokenizer.from_pretrained( model_name, token=os.environ.get("HF_TOKEN"), additional_special_tokens=["[VERSE]", "[WORD]", "[ROOT]", "[FEATURES]"], trust_remote_code=True ) if self.tokenizer.pad_token is None: self.tokenizer.add_special_tokens({"pad_token": "[PAD]"}) try: self.model = AutoModelForCausalLM.from_pretrained( model_name, token=os.environ.get("HF_TOKEN"), torch_dtype=torch.float32, low_cpu_mem_usage=True, trust_remote_code=True, attn_implementation="eager" ) except Exception as e: logger.error(f"Error loading model directly: {str(e)}") logger.info("Attempting to load with fallback parameters...") from transformers import AutoConfig config = AutoConfig.from_pretrained( model_name, token=os.environ.get("HF_TOKEN"), trust_remote_code=True ) self.model = AutoModelForCausalLM.from_pretrained( model_name, token=os.environ.get("HF_TOKEN"), config=config, torch_dtype=torch.float32, low_cpu_mem_usage=True, trust_remote_code=True, revision="main", attn_implementation="eager" ) self.model.resize_token_embeddings(len(self.tokenizer)) self.model.train() self.model.config.use_cache = False self.model = self.accelerator.prepare(self.model) if hasattr(self.model, "gradient_checkpointing_enable"): self.model.gradient_checkpointing_enable() else: logger.warning("Gradient checkpointing not available for this model") def prepare_training_data(self, chapter_data: List[Dict]) -> Dataset: return QuranicDataset(chapter_data, self.tokenizer) def train_chunk(self, training_args: TrainingArguments, dataset: Dataset, chunk_output_dir: str) -> bool: try: data_collator = DataCollatorForLanguageModeling( tokenizer=self.tokenizer, mlm=False ) trainer = Trainer( model=self.model, args=training_args, train_dataset=dataset, tokenizer=self.tokenizer, data_collator=data_collator ) logger.info(f"Starting training on chunk at {chunk_output_dir} with device {self.accelerator.device}") trainer.train() trainer.save_model(chunk_output_dir) zip_filename = zip_checkpoint(chunk_output_dir) base_url = os.environ.get("HF_SPACE_URL", "http://localhost") download_link = f"{base_url}/file/{zip_filename}" logger.info(f"Checkpoint download link: {download_link}") with open(os.path.join(chunk_output_dir, "download_link.txt"), "w") as f: f.write(download_link) del trainer gc.collect() manage_memory() manage_gpu_resources() return True except RuntimeError as e: if "NVML_SUCCESS" in str(e): logger.error(f"Error in training chunk at {chunk_output_dir}: {str(e)}") logger.info("GPU error detected. Shifting to CPU...") if torch.cuda.is_available(): torch.cuda.empty_cache() self.model = self.model.to("cpu") training_args.no_cuda = True try: trainer = Trainer( model=self.model, args=training_args, train_dataset=dataset, tokenizer=self.tokenizer, data_collator=data_collator ) logger.info(f"Retrying training on CPU for chunk at {chunk_output_dir}") trainer.train() trainer.save_model(chunk_output_dir) zip_filename = zip_checkpoint(chunk_output_dir) base_url = os.environ.get("HF_SPACE_URL", "http://localhost") download_link = f"{base_url}/file/{zip_filename}" logger.info(f"Checkpoint download link: {download_link}") with open(os.path.join(chunk_output_dir, "download_link.txt"), "w") as f: f.write(download_link) del trainer gc.collect() manage_memory() return True except Exception as cpu_e: logger.error(f"Training failed on CPU: {str(cpu_e)}") logger.error(traceback.format_exc()) return False else: logger.error(f"Error in training chunk at {chunk_output_dir}: {str(e)}") logger.error(traceback.format_exc()) return False def poll_for_gpu(self, poll_interval: int = 10, max_attempts: int = 30) -> bool: attempts = 0 while attempts < max_attempts: if torch.cuda.is_available(): manage_gpu_resources(1) logger.info("GPU is now available for training.") return True time.sleep(poll_interval) attempts += 1 logger.info(f"Polling for GPU availability... attempt {attempts}/{max_attempts}") return False def train_chapter(self, chapter_num: int, processed_verses: List[Dict], chunk_size: int = 5, num_train_epochs: int = 5, per_device_train_batch_size: int = 1, learning_rate: float = 3e-5, weight_decay: float = 0.01, gradient_accumulation_steps: int = 32) -> bool: total_examples = len(processed_verses) total_chunks = math.ceil(total_examples / chunk_size) logger.info(f"Chapter {chapter_num}: {total_examples} examples, {total_chunks} chunks.") for chunk_index in range(total_chunks): chunk_data = processed_verses[chunk_index * chunk_size: (chunk_index + 1) * chunk_size] dataset = self.prepare_training_data(chunk_data) chunk_output_dir = os.path.join(self.checkpoint_dir, f"chapter_{chapter_num}", f"chunk_{chunk_index}") os.makedirs(chunk_output_dir, exist_ok=True) # For T4, enable FP16 training for better performance. training_args = TrainingArguments( output_dir=chunk_output_dir, overwrite_output_dir=True, num_train_epochs=num_train_epochs, per_device_train_batch_size=per_device_train_batch_size, learning_rate=learning_rate, weight_decay=weight_decay, gradient_accumulation_steps=gradient_accumulation_steps, fp16=(self.accelerator.device.type == "cuda"), remove_unused_columns=False, logging_steps=50, report_to="none", eval_strategy="no", no_cuda=(self.accelerator.device.type != "cuda"), optim="adamw_torch", dataloader_num_workers=0, dataloader_pin_memory=False ) logger.info(f"Training chunk {chunk_index+1}/{total_chunks} for Chapter {chapter_num}...") success = self.train_chunk(training_args, dataset, chunk_output_dir) if not success and self.accelerator.device.type == "cuda": logger.error(f"Training failed for Chapter {chapter_num} on chunk {chunk_index+1}.") return False logger.info(f"Completed training for Chapter {chapter_num}") return True class QuranicPipeline: def __init__(self, source_dir: str = ".", working_dir: str = "working_directory", start_chapter: int = 1, end_chapter: int = 114): self.source_dir = source_dir self.working_dir = working_dir self.start_chapter = start_chapter self.end_chapter = end_chapter self.setup_directories() global logger logger = logging.getLogger(__name__) self.state = { "last_processed_chapter": 0, "last_trained_chapter": 0, "current_state": "initialized", "errors": [], "start_time": datetime.now().isoformat() } self.load_state() try: logger.info("Initializing Quranic Data Processor...") self.processor = QuranicDataProcessor( source_dir=self.source_dir, output_dir=os.path.join(self.working_dir, "processed_data") ) logger.info("Initializing Quranic Model Trainer...") self.trainer = QuranicModelTrainer( model_name="google/gemma-2-2b", processed_data_dir=os.path.join(self.working_dir, "processed_data"), checkpoint_dir=os.path.join(self.working_dir, "checkpoints") ) self.state["current_state"] = "ready" self.save_state() except Exception as e: self.handle_error("Initialization failed", e) raise def setup_directories(self): dirs = [ self.working_dir, os.path.join(self.working_dir, "processed_data"), os.path.join(self.working_dir, "checkpoints"), os.path.join(self.working_dir, "logs"), os.path.join(self.working_dir, "state") ] for d in dirs: os.makedirs(d, exist_ok=True) def load_state(self): state_file = os.path.join(self.working_dir, "state", "pipeline_state.json") if os.path.exists(state_file): try: with open(state_file, 'r') as f: saved_state = json.load(f) self.state.update(saved_state) logger.info(f"Loaded previous state: Last processed chapter {self.state.get('last_processed_chapter')}, last trained chapter {self.state.get('last_trained_chapter')}") except Exception as e: logger.warning(f"Could not load previous state: {str(e)}") def save_state(self): state_file = os.path.join(self.working_dir, "state", "pipeline_state.json") with open(state_file, 'w') as f: json.dump(self.state, f, indent=2) def handle_error(self, context: str, error: Exception): error_detail = { "timestamp": datetime.now().isoformat(), "context": context, "error": str(error), "traceback": traceback.format_exc() } self.state.setdefault("errors", []).append(error_detail) logger.error(f"{context}: {str(error)}") self.save_state() def run_pipeline(self): logger.info("Starting pipeline execution") try: if not self.processor.load_source_files(): raise Exception("Failed to load source files") for chapter in range(self.start_chapter, self.end_chapter + 1): logger.info(f"=== Processing Chapter {chapter} ===") processed_chapter_data = [] verse = 1 while True: verse_data = self.processor.process_verse(chapter, verse) if verse_data is None: break processed_chapter_data.append(asdict(verse_data)) verse += 1 if processed_chapter_data: success = self.trainer.train_chapter(chapter, processed_chapter_data) if not success: logger.error(f"Training failed for Chapter {chapter}. Stopping pipeline.") break self.state["last_trained_chapter"] = chapter self.save_state() else: logger.warning(f"No processed data for Chapter {chapter}") self.state["last_processed_chapter"] = chapter self.save_state() manage_memory() manage_gpu_resources() logger.info("Pipeline execution completed") final_model_dir = os.path.join(self.working_dir, "final_model") os.makedirs(final_model_dir, exist_ok=True) self.trainer.accelerator.wait_for_everyone() self.trainer.accelerator.save_model(self.trainer.model, final_model_dir) self.trainer.tokenizer.save_pretrained(final_model_dir) logger.info(f"Final model saved to {final_model_dir}") except Exception as e: self.handle_error("Pipeline execution failed", e) raise @spaces.GPU() def start_pipeline(): try: logger.info("Starting Quranic Training Pipeline with Gemma-2-2b on T4 Medium") logger.info(f"PyTorch version: {torch.__version__}") logger.info(f"CUDA available: {torch.cuda.is_available()}") if torch.cuda.is_available(): logger.info(f"CUDA device count: {torch.cuda.device_count()}") logger.info(f"CUDA device name: {torch.cuda.get_device_name(0)}") if not os.environ.get("HF_TOKEN"): logger.warning("HF_TOKEN environment variable not set. Model loading may fail.") required_files = [ 'quranic-corpus-morphology-0.4.txt', 'en.sample.quran-maududi.txt', 'en.w4w.qurandev.txt' ] missing_files = [f for f in required_files if not os.path.exists(f)] if missing_files: return f"Missing required data files: {', '.join(missing_files)}" pipeline = QuranicPipeline( source_dir=".", working_dir="working_directory", start_chapter=1, end_chapter=114 ) pipeline.run_pipeline() return "Pipeline execution completed successfully." except Exception as e: error_msg = f"Pipeline execution failed: {str(e)}\n{traceback.format_exc()}" logger.error(error_msg) return error_msg iface = gr.Interface( fn=start_pipeline, inputs=[], outputs=gr.Textbox(label="Pipeline Status", lines=10), title="Quranic Training Pipeline for Gemma-2-2b on T4 Medium", description="""This pipeline is updated for T4 medium with FP16 training, checkpoint saving (download link provided), and enhanced error handling. """ ) if __name__ == "__main__": iface.launch()