eBlessings commited on
Commit
e682fad
·
verified ·
1 Parent(s): 90fae50

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -685
app.py DELETED
@@ -1,685 +0,0 @@
1
- #!/usr/bin/env python3
2
- """
3
- app.py – Quranic Data Training Pipeline Endpoint for ZeroGPU Spaces
4
- --------------------------------------------------------------------
5
- This script integrates a full Quranic data processing and training pipeline
6
- into a Gradio interface endpoint. It is optimized for CPU/GPU-based training
7
- on Hugging Face ZeroGPU (using the Gradio SDK) and uses chunked incremental
8
- training, memory management, and gradient checkpointing to efficiently update
9
- Google's Gemma-2-2b model with Quranic data.
10
-
11
- Requirements:
12
- - Transformers (==4.45.0)
13
- - Gradio (>=5.12.0)
14
- - PyTorch (==2.3.0)
15
- - psutil (==5.9.5)
16
- - Accelerate (>=0.26.0)
17
- - Hugging Face PRO subscription with ZeroGPU enabled (ensure your HF token is set as an environment variable HF_TOKEN)
18
- - Ubuntu CPU/Linux with access to ZeroGPU hardware via Spaces
19
- - Input data files placed in the project root.
20
- - Sufficient storage in "working_directory"
21
-
22
- Author: [M-Saddam Hussain]
23
- Date: March 2025
24
- Data References: [Tanzil.net, IslamSource, QuranicCorpus]
25
- """
26
-
27
- import json
28
- import logging
29
- import os
30
- import traceback
31
- import gc
32
- import time
33
- import psutil
34
- import math
35
- import shutil
36
- from datetime import datetime
37
- from typing import Dict, List, Optional
38
- from dataclasses import dataclass, asdict
39
-
40
- import torch
41
- # Limit PyTorch threads for CPU stability.
42
- torch.set_num_threads(8)
43
-
44
- from torch.utils.data import Dataset
45
- from transformers import (
46
- AutoTokenizer,
47
- AutoModelForCausalLM,
48
- TrainingArguments,
49
- Trainer,
50
- DataCollatorForLanguageModeling,
51
- __version__ as transformers_version
52
- )
53
- from threading import Lock
54
-
55
- import gradio as gr
56
- import spaces
57
-
58
- # Check for minimum required Transformers version for custom model support
59
- MIN_TRANSFORMERS_VERSION = "4.42.0"
60
- if tuple(map(int, transformers_version.split("."))) < tuple(map(int, MIN_TRANSFORMERS_VERSION.split("."))):
61
- logging.warning(f"Transformers version {transformers_version} detected. Please upgrade to at least {MIN_TRANSFORMERS_VERSION} for proper support of the 'gemma2' architecture.")
62
-
63
- # Configure logging
64
- logging.basicConfig(
65
- level=logging.INFO,
66
- format='%(asctime)s - %(levelname)s - %(message)s',
67
- handlers=[
68
- logging.FileHandler('pipeline.log'),
69
- logging.StreamHandler()
70
- ]
71
- )
72
- logger = logging.getLogger(__name__)
73
-
74
- def manage_memory(threshold_percent: int = 90, min_available_mb: int = 500, sleep_duration: int = 10):
75
- """
76
- Check memory usage; if usage is high or available memory is low,
77
- force garbage collection and sleep briefly.
78
- """
79
- vm = psutil.virtual_memory()
80
- used_percent = vm.percent
81
- available_mb = vm.available / (1024 * 1024)
82
- logger.info(f"Memory usage: {used_percent}% used, {available_mb:.2f} MB available")
83
- if used_percent > threshold_percent or available_mb < min_available_mb:
84
- logger.warning("High memory usage detected, forcing garbage collection and sleeping...")
85
- gc.collect()
86
- time.sleep(sleep_duration)
87
-
88
- def manage_gpu_resources(sleep_duration: int = 5):
89
- """
90
- Checks GPU memory and empties cache if necessary.
91
- """
92
- if torch.cuda.is_available():
93
- allocated = torch.cuda.memory_allocated() / (1024 * 1024)
94
- cached = torch.cuda.memory_reserved() / (1024 * 1024)
95
- logger.info(f"GPU Memory Allocated: {allocated:.2f} MB, Reserved: {cached:.2f} MB")
96
- torch.cuda.empty_cache()
97
- time.sleep(sleep_duration)
98
-
99
- def zip_checkpoint(checkpoint_dir: str) -> str:
100
- """
101
- Zips the checkpoint directory and returns the path to the zip file.
102
- """
103
- zip_file = checkpoint_dir + ".zip"
104
- if os.path.exists(zip_file):
105
- os.remove(zip_file)
106
- shutil.make_archive(checkpoint_dir, 'zip', checkpoint_dir)
107
- return os.path.basename(zip_file)
108
-
109
- @dataclass
110
- class WordAnalysis:
111
- """Structured representation of word-level analysis"""
112
- arabic: str
113
- translation: str
114
- position: str
115
- morphology: Dict
116
- features: List[str]
117
- root: str
118
- location: str
119
- metadata: Dict
120
-
121
- @dataclass
122
- class VerseData:
123
- """Structured representation of verse-level data"""
124
- chapter: int
125
- verse: int
126
- arabic_text: str
127
- translation: str
128
- words: List[WordAnalysis]
129
- metadata: Dict
130
-
131
- class QuranicDataset(Dataset):
132
- """Custom dataset for Quranic text training."""
133
- def __init__(self, processed_data: List[Dict], tokenizer):
134
- self.examples = []
135
- self.tokenizer = tokenizer
136
- for verse_data in processed_data:
137
- self.examples.extend(self._create_training_examples(verse_data))
138
-
139
- def _create_training_examples(self, verse_data: Dict) -> List[Dict]:
140
- examples = []
141
- text_block = (
142
- f"[VERSE {verse_data['chapter']}:{verse_data['verse']}]\n"
143
- f"Arabic: {verse_data['arabic_text']}\n"
144
- f"Translation: {verse_data['translation']}\n"
145
- "Morphological Analysis:\n"
146
- )
147
- for word in verse_data['words']:
148
- text_block += (
149
- f"[WORD] {word['arabic']}\n"
150
- f"Root: {word['root']}\n"
151
- f"Features: {', '.join(word['features'])}\n"
152
- )
153
- examples.append(self._format_example(text_block))
154
- return examples
155
-
156
- def _format_example(self, text: str) -> Dict:
157
- encodings = self.tokenizer(
158
- text,
159
- truncation=True,
160
- max_length=64,
161
- padding="max_length",
162
- return_tensors="pt"
163
- )
164
- # Move tensors to CPU explicitly
165
- return {
166
- "input_ids": encodings["input_ids"][0].cpu(),
167
- "attention_mask": encodings["attention_mask"][0].cpu()
168
- }
169
-
170
- def __len__(self):
171
- return len(self.examples)
172
-
173
- def __getitem__(self, idx):
174
- return self.examples[idx]
175
-
176
- class QuranicDataProcessor:
177
- """Processes Quranic data into structured training examples."""
178
- def __init__(self, source_dir: str, output_dir: str):
179
- self.source_dir = source_dir
180
- self.output_dir = output_dir
181
- self.morphological_data: Dict[str, Dict] = {}
182
- self.word_by_word_data: Dict[str, List[str]] = {}
183
- self.translation_data: Dict[str, str] = {}
184
- self.processing_lock = Lock()
185
- os.makedirs(output_dir, exist_ok=True)
186
- os.makedirs(os.path.join(output_dir, 'json'), exist_ok=True)
187
- os.makedirs(os.path.join(output_dir, 'txt'), exist_ok=True)
188
- os.makedirs(os.path.join(output_dir, 'checkpoints'), exist_ok=True)
189
- logger.info(f"Initialized processor with source dir: {source_dir}")
190
-
191
- def load_source_files(self) -> bool:
192
- """Loads morphological, translation, and word-by-word data from project root."""
193
- try:
194
- logger.info("Loading morphological data...")
195
- morph_path = os.path.join(self.source_dir, 'quranic-corpus-morphology-0.4.txt')
196
- with open(morph_path, 'r', encoding='utf-8') as f:
197
- next(f)
198
- for line in f:
199
- if line.strip() and not line.startswith('#'):
200
- parts = line.strip().split('\t')
201
- if len(parts) >= 4:
202
- location = parts[0].strip('()')
203
- self.morphological_data[location] = {
204
- 'form': parts[1],
205
- 'tag': parts[2],
206
- 'features': parts[3]
207
- }
208
- logger.info(f"Loaded {len(self.morphological_data)} morphological entries")
209
- logger.info("Loading translation data...")
210
- trans_path = os.path.join(self.source_dir, 'en.sample.quran-maududi.txt')
211
- with open(trans_path, 'r', encoding='utf-8') as f:
212
- next(f)
213
- for line in f:
214
- if line.strip():
215
- parts = line.strip().split('|')
216
- if len(parts) >= 3:
217
- key = f"{parts[0]}:{parts[1]}"
218
- self.translation_data[key] = parts[2].strip()
219
- logger.info(f"Loaded {len(self.translation_data)} verse translations")
220
- logger.info("Loading word-by-word data...")
221
- word_path = os.path.join(self.source_dir, 'en.w4w.qurandev.txt')
222
- with open(word_path, 'r', encoding='utf-8-sig') as f:
223
- lines = [line.strip() for line in f if line.strip()]
224
- sorted_keys = sorted(self.translation_data.keys(), key=lambda x: (int(x.split(':')[0]), int(x.split(':')[1])))
225
- if len(lines) != len(sorted_keys):
226
- logger.warning("Mismatch between word-by-word file and translation data")
227
- for i, verse_key in enumerate(sorted_keys):
228
- if i < len(lines):
229
- words = [w.strip() for w in lines[i].split('|') if w.strip()]
230
- self.word_by_word_data[verse_key] = words
231
- logger.info(f"Loaded word-by-word data for {len(self.word_by_word_data)} verses")
232
- return True
233
- except Exception as e:
234
- logger.error(f"Error loading source files: {str(e)}")
235
- logger.error(traceback.format_exc())
236
- return False
237
-
238
- def process_verse(self, chapter: int, verse: int) -> Optional[VerseData]:
239
- """Processes a single verse into structured format."""
240
- try:
241
- verse_ref = f"{chapter}:{verse}"
242
- logger.info(f"Processing verse {verse_ref}")
243
- translation = self.translation_data.get(verse_ref)
244
- if not translation:
245
- logger.warning(f"No translation for verse {verse_ref}")
246
- return None
247
- verse_word_list = self.word_by_word_data.get(verse_ref, [])
248
- if not verse_word_list:
249
- logger.warning(f"No word-by-word data for verse {verse_ref}")
250
- return None
251
- verse_words: List[WordAnalysis] = []
252
- arabic_text = ""
253
- for pos in range(1, len(verse_word_list) + 1):
254
- pattern = f"{chapter}:{verse}:{pos}:"
255
- matching_entries = [data for loc, data in self.morphological_data.items() if loc.startswith(pattern)]
256
- if not matching_entries:
257
- logger.debug(f"No morphological data for {pattern}")
258
- continue
259
- combined_form = " ".join(entry['form'] for entry in matching_entries)
260
- combined_features = []
261
- root = ""
262
- for entry in matching_entries:
263
- features = entry['features'].split('|')
264
- combined_features.extend(features)
265
- if not root:
266
- for f in features:
267
- if 'ROOT:' in f:
268
- root = f.split('ROOT:')[1]
269
- break
270
- word_translation = verse_word_list[pos - 1]
271
- word = WordAnalysis(
272
- arabic=combined_form,
273
- translation=word_translation,
274
- position=str(pos),
275
- morphology=matching_entries[0],
276
- features=combined_features,
277
- root=root,
278
- location=f"{chapter}:{verse}:{pos}",
279
- metadata={}
280
- )
281
- verse_words.append(word)
282
- arabic_text += f" {combined_form}"
283
- verse_data = VerseData(
284
- chapter=chapter,
285
- verse=verse,
286
- arabic_text=arabic_text.strip(),
287
- translation=translation,
288
- words=verse_words,
289
- metadata={
290
- "processed_timestamp": datetime.now().isoformat(),
291
- "word_count": len(verse_words)
292
- }
293
- )
294
- self._save_verse_data(verse_data)
295
- return verse_data
296
- except Exception as e:
297
- logger.error(f"Error processing verse {chapter}:{verse}: {str(e)}")
298
- logger.error(traceback.format_exc())
299
- return None
300
-
301
- def _save_verse_data(self, verse_data: VerseData):
302
- """Saves processed verse data as JSON and TXT."""
303
- try:
304
- verse_ref = f"{verse_data.chapter}:{verse_data.verse}"
305
- json_path = os.path.join(self.output_dir, 'json', f'verse_{verse_ref.replace(":", "_")}.json')
306
- with open(json_path, 'w', encoding='utf-8') as f:
307
- json.dump(asdict(verse_data), f, ensure_ascii=False, indent=2)
308
- txt_path = os.path.join(self.output_dir, 'txt', f'verse_{verse_ref.replace(":", "_")}.txt')
309
- with open(txt_path, 'w', encoding='utf-8') as f:
310
- f.write(f"=== Verse {verse_ref} ===\n\n")
311
- f.write(f"Arabic Text:\n{verse_data.arabic_text}\n\n")
312
- f.write(f"Translation:\n{verse_data.translation}\n\n")
313
- f.write("Word Analysis:\n")
314
- for i, word in enumerate(verse_data.words, 1):
315
- f.write(f"\nWord {i}:\n")
316
- f.write(f" Arabic: {word.arabic}\n")
317
- f.write(f" Translation: {word.translation}\n")
318
- f.write(f" Root: {word.root}\n")
319
- f.write(" Features:\n")
320
- for feature in word.features:
321
- f.write(f" - {feature}\n")
322
- f.write("\n")
323
- logger.info(f"Saved verse data to {json_path} and {txt_path}")
324
- except Exception as e:
325
- logger.error(f"Error saving verse data: {str(e)}")
326
- logger.error(traceback.format_exc())
327
-
328
- class QuranicModelTrainer:
329
- """Trains the Gemma-2-2b model on Quranic data using chunked incremental updates."""
330
- def __init__(self,
331
- model_name: str = "google/gemma-2-2b",
332
- processed_data_dir: str = "processed_data",
333
- checkpoint_dir: str = "checkpoints"):
334
- self.processed_data_dir = processed_data_dir
335
- self.checkpoint_dir = checkpoint_dir
336
- self.device = "cuda" if torch.cuda.is_available() else "cpu"
337
- logger.info(f"Using device: {self.device}")
338
- logger.info("Loading tokenizer and model...")
339
-
340
- self.tokenizer = AutoTokenizer.from_pretrained(
341
- model_name,
342
- token=os.environ.get("HF_TOKEN"),
343
- additional_special_tokens=["[VERSE]", "[WORD]", "[ROOT]", "[FEATURES]"],
344
- trust_remote_code=True
345
- )
346
- if self.tokenizer.pad_token is None:
347
- self.tokenizer.add_special_tokens({"pad_token": "[PAD]"})
348
-
349
- try:
350
- self.model = AutoModelForCausalLM.from_pretrained(
351
- model_name,
352
- token=os.environ.get("HF_TOKEN"),
353
- torch_dtype=torch.float32,
354
- low_cpu_mem_usage=True,
355
- trust_remote_code=True,
356
- attn_implementation="eager"
357
- )
358
- except Exception as e:
359
- logger.error(f"Error loading model directly: {str(e)}")
360
- logger.info("Attempting to load with fallback parameters...")
361
- from transformers import AutoConfig
362
- config = AutoConfig.from_pretrained(
363
- model_name,
364
- token=os.environ.get("HF_TOKEN"),
365
- trust_remote_code=True
366
- )
367
- self.model = AutoModelForCausalLM.from_pretrained(
368
- model_name,
369
- token=os.environ.get("HF_TOKEN"),
370
- config=config,
371
- torch_dtype=torch.float32,
372
- low_cpu_mem_usage=True,
373
- trust_remote_code=True,
374
- revision="main",
375
- attn_implementation="eager"
376
- )
377
-
378
- self.model.resize_token_embeddings(len(self.tokenizer))
379
- self.model.train()
380
- self.model.config.use_cache = False
381
-
382
- if hasattr(self.model, "gradient_checkpointing_enable"):
383
- self.model.gradient_checkpointing_enable()
384
- else:
385
- logger.warning("Gradient checkpointing not available for this model")
386
-
387
- # Use Accelerate for device management
388
- from accelerate import Accelerator
389
- self.accelerator = Accelerator()
390
- self.model = self.accelerator.prepare(self.model)
391
-
392
- def prepare_training_data(self, chapter_data: List[Dict]) -> Dataset:
393
- """Creates a QuranicDataset from processed chapter data."""
394
- return QuranicDataset(chapter_data, self.tokenizer)
395
-
396
- def train_chunk(self, training_args: TrainingArguments, dataset: Dataset, chunk_output_dir: str) -> bool:
397
- """
398
- Trains a single chunk. Returns True if successful.
399
- """
400
- try:
401
- data_collator = DataCollatorForLanguageModeling(
402
- tokenizer=self.tokenizer,
403
- mlm=False
404
- )
405
- trainer = Trainer(
406
- model=self.model,
407
- args=training_args,
408
- train_dataset=dataset,
409
- processing_class=self.tokenizer, # Updated per deprecation notice.
410
- data_collator=data_collator
411
- )
412
- logger.info(f"Starting training on chunk at {chunk_output_dir} with device {self.device}")
413
- trainer.train()
414
- trainer.save_model(chunk_output_dir)
415
- zip_filename = zip_checkpoint(chunk_output_dir)
416
- base_url = os.environ.get("HF_SPACE_URL", "http://localhost")
417
- download_link = f"{base_url}/file/{zip_filename}"
418
- logger.info(f"Checkpoint download link: {download_link}")
419
- with open(os.path.join(chunk_output_dir, "download_link.txt"), "w") as f:
420
- f.write(download_link)
421
- del trainer
422
- gc.collect()
423
- manage_memory()
424
- manage_gpu_resources()
425
- return True
426
- except Exception as e:
427
- logger.error(f"Error in training chunk at {chunk_output_dir}: {str(e)}")
428
- logger.error(traceback.format_exc())
429
- return False
430
-
431
- def poll_for_gpu(self, poll_interval: int = 10, max_attempts: int = 30) -> bool:
432
- """
433
- Polls periodically to check if GPU is available.
434
- Returns True if GPU becomes available within the attempts, otherwise False.
435
- """
436
- attempts = 0
437
- while attempts < max_attempts:
438
- if torch.cuda.is_available():
439
- manage_gpu_resources(1)
440
- logger.info("GPU is now available for training.")
441
- return True
442
- time.sleep(poll_interval)
443
- attempts += 1
444
- logger.info(f"Polling for GPU availability... attempt {attempts}/{max_attempts}")
445
- return False
446
-
447
- def train_chapter(self,
448
- chapter_num: int,
449
- processed_verses: List[Dict],
450
- chunk_size: int = 5, # Reduced chunk size
451
- num_train_epochs: int = 5, # Lower epochs for testing
452
- per_device_train_batch_size: int = 1,
453
- learning_rate: float = 3e-5,
454
- weight_decay: float = 0.01,
455
- gradient_accumulation_steps: int = 32) -> bool:
456
- """
457
- Splits chapter data into chunks and trains incrementally.
458
- If GPU training fails, shifts to CPU and then polls for GPU availability
459
- to switch back.
460
- """
461
- total_examples = len(processed_verses)
462
- total_chunks = math.ceil(total_examples / chunk_size)
463
- logger.info(f"Chapter {chapter_num}: {total_examples} examples, {total_chunks} chunks.")
464
- for chunk_index in range(total_chunks):
465
- chunk_data = processed_verses[chunk_index * chunk_size: (chunk_index + 1) * chunk_size]
466
- dataset = self.prepare_training_data(chunk_data)
467
- chunk_output_dir = os.path.join(self.checkpoint_dir, f"chapter_{chapter_num}", f"chunk_{chunk_index}")
468
- os.makedirs(chunk_output_dir, exist_ok=True)
469
-
470
- training_args = TrainingArguments(
471
- output_dir=chunk_output_dir,
472
- overwrite_output_dir=True,
473
- num_train_epochs=num_train_epochs,
474
- per_device_train_batch_size=per_device_train_batch_size,
475
- learning_rate=learning_rate,
476
- weight_decay=weight_decay,
477
- gradient_accumulation_steps=gradient_accumulation_steps,
478
- fp16=False,
479
- remove_unused_columns=False,
480
- logging_steps=50,
481
- report_to="none",
482
- eval_strategy="no",
483
- no_cuda=(self.device == "cpu"), # Force-disable CUDA when on CPU
484
- dataloader_num_workers=0,
485
- dataloader_pin_memory=False
486
- )
487
- logger.info(f"Training chunk {chunk_index+1}/{total_chunks} for Chapter {chapter_num} on device {self.device}...")
488
- success = self.train_chunk(training_args, dataset, chunk_output_dir)
489
-
490
- # If training fails on GPU, shift to CPU and retry with reinitialized optimizer
491
- if not success and self.device == "cuda":
492
- logger.info(f"GPU error detected on chunk {chunk_index+1}. Shifting to CPU for this chunk...")
493
- self.model.to("cpu")
494
- self.device = "cpu"
495
- # Reinitialize optimizer for CPU by setting the explicit optimizer type
496
- training_args.no_cuda = True
497
- training_args.optim = "adamw_torch" # Explicit optimizer for CPU
498
- success = self.train_chunk(training_args, dataset, chunk_output_dir)
499
- if not success:
500
- logger.error(f"Training failed for Chapter {chapter_num} on chunk {chunk_index+1} even on CPU. Stopping chapter training.")
501
- return False
502
- # Poll for GPU availability before switching back
503
- if self.poll_for_gpu():
504
- self.model.to("cuda")
505
- self.device = "cuda"
506
- else:
507
- logger.warning("GPU did not become available during polling. Continuing on CPU.")
508
-
509
- if not success:
510
- logger.error(f"Training failed for Chapter {chapter_num} on chunk {chunk_index+1}. Stopping chapter training.")
511
- return False
512
- logger.info(f"Completed training for Chapter {chapter_num}")
513
- return True
514
-
515
- class QuranicPipeline:
516
- """Integrates data processing and incremental model training for all chapters."""
517
- def __init__(self,
518
- source_dir: str = ".",
519
- working_dir: str = "working_directory",
520
- start_chapter: int = 1,
521
- end_chapter: int = 114):
522
- self.source_dir = source_dir
523
- self.working_dir = working_dir
524
- self.start_chapter = start_chapter
525
- self.end_chapter = end_chapter
526
- self.setup_directories()
527
- global logger
528
- logger = logging.getLogger(__name__)
529
- self.state = {
530
- "last_processed_chapter": 0,
531
- "last_trained_chapter": 0,
532
- "current_state": "initialized",
533
- "errors": [],
534
- "start_time": datetime.now().isoformat()
535
- }
536
- self.load_state()
537
- try:
538
- logger.info("Initializing Quranic Data Processor...")
539
- self.processor = QuranicDataProcessor(
540
- source_dir=self.source_dir,
541
- output_dir=os.path.join(self.working_dir, "processed_data")
542
- )
543
- logger.info("Initializing Quranic Model Trainer...")
544
- self.trainer = QuranicModelTrainer(
545
- model_name="google/gemma-2-2b",
546
- processed_data_dir=os.path.join(self.working_dir, "processed_data"),
547
- checkpoint_dir=os.path.join(self.working_dir, "checkpoints")
548
- )
549
- self.state["current_state"] = "ready"
550
- self.save_state()
551
- except Exception as e:
552
- self.handle_error("Initialization failed", e)
553
- raise
554
-
555
- def setup_directories(self):
556
- dirs = [
557
- self.working_dir,
558
- os.path.join(self.working_dir, "processed_data"),
559
- os.path.join(self.working_dir, "checkpoints"),
560
- os.path.join(self.working_dir, "logs"),
561
- os.path.join(self.working_dir, "state")
562
- ]
563
- for d in dirs:
564
- os.makedirs(d, exist_ok=True)
565
-
566
- def load_state(self):
567
- state_file = os.path.join(self.working_dir, "state", "pipeline_state.json")
568
- if os.path.exists(state_file):
569
- try:
570
- with open(state_file, 'r') as f:
571
- saved_state = json.load(f)
572
- self.state.update(saved_state)
573
- logger.info(f"Loaded previous state: Last processed chapter {self.state.get('last_processed_chapter')}, last trained chapter {self.state.get('last_trained_chapter')}")
574
- except Exception as e:
575
- logger.warning(f"Could not load previous state: {str(e)}")
576
-
577
- def save_state(self):
578
- state_file = os.path.join(self.working_dir, "state", "pipeline_state.json")
579
- with open(state_file, 'w') as f:
580
- json.dump(self.state, f, indent=2)
581
-
582
- def handle_error(self, context: str, error: Exception):
583
- error_detail = {
584
- "timestamp": datetime.now().isoformat(),
585
- "context": context,
586
- "error": str(error),
587
- "traceback": traceback.format_exc()
588
- }
589
- self.state.setdefault("errors", []).append(error_detail)
590
- logger.error(f"{context}: {str(error)}")
591
- self.save_state()
592
-
593
- def run_pipeline(self):
594
- """Runs processing and training for chapters sequentially, then saves the final model."""
595
- logger.info("Starting pipeline execution")
596
- try:
597
- if not self.processor.load_source_files():
598
- raise Exception("Failed to load source files")
599
- for chapter in range(self.start_chapter, self.end_chapter + 1):
600
- logger.info(f"=== Processing Chapter {chapter} ===")
601
- processed_chapter_data = []
602
- verse = 1
603
- while True:
604
- verse_data = self.processor.process_verse(chapter, verse)
605
- if verse_data is None:
606
- break
607
- processed_chapter_data.append(asdict(verse_data))
608
- verse += 1
609
- if processed_chapter_data:
610
- success = self.trainer.train_chapter(chapter, processed_chapter_data)
611
- if not success:
612
- logger.error(f"Training failed for Chapter {chapter}. Stopping pipeline.")
613
- break
614
- self.state["last_trained_chapter"] = chapter
615
- self.save_state()
616
- else:
617
- logger.warning(f"No processed data for Chapter {chapter}")
618
- self.state["last_processed_chapter"] = chapter
619
- self.save_state()
620
- manage_memory()
621
- manage_gpu_resources()
622
- logger.info("Pipeline execution completed")
623
- final_model_dir = os.path.join(self.working_dir, "final_model")
624
- os.makedirs(final_model_dir, exist_ok=True)
625
- self.trainer.model.save_pretrained(final_model_dir)
626
- self.trainer.tokenizer.save_pretrained(final_model_dir)
627
- logger.info(f"Final model saved to {final_model_dir}")
628
- except Exception as e:
629
- self.handle_error("Pipeline execution failed", e)
630
- raise
631
-
632
- @spaces.GPU() # Request ZeroGPU hardware for the Space
633
- def start_pipeline():
634
- try:
635
- logger.info("Starting Quranic Training Pipeline with Gemma-2-2b")
636
- logger.info(f"PyTorch version: {torch.__version__}")
637
- logger.info(f"CUDA available: {torch.cuda.is_available()}")
638
- if torch.cuda.is_available():
639
- logger.info(f"CUDA device count: {torch.cuda.device_count()}")
640
- logger.info(f"CUDA device name: {torch.cuda.get_device_name(0)}")
641
- if not os.environ.get("HF_TOKEN"):
642
- logger.warning("HF_TOKEN environment variable not set. Model loading may fail.")
643
- required_files = [
644
- 'quranic-corpus-morphology-0.4.txt',
645
- 'en.sample.quran-maududi.txt',
646
- 'en.w4w.qurandev.txt'
647
- ]
648
- missing_files = [f for f in required_files if not os.path.exists(f)]
649
- if missing_files:
650
- return f"Missing required data files: {', '.join(missing_files)}"
651
- pipeline = QuranicPipeline(
652
- source_dir=".",
653
- working_dir="working_directory",
654
- start_chapter=1,
655
- end_chapter=114
656
- )
657
- pipeline.run_pipeline()
658
- return "Pipeline execution completed successfully."
659
- except Exception as e:
660
- error_msg = f"Pipeline execution failed: {str(e)}\n{traceback.format_exc()}"
661
- logger.error(error_msg)
662
- return error_msg
663
-
664
- iface = gr.Interface(
665
- fn=start_pipeline,
666
- inputs=[],
667
- outputs=gr.Textbox(label="Pipeline Status", lines=10),
668
- title="Quranic Training Pipeline for Gemma-2-2b",
669
- description="""This pipeline fine-tunes Google's Gemma-2-2b model on Quranic data.
670
-
671
- Click 'Submit' to trigger the Quranic data processing and training pipeline on ZeroGPU.
672
-
673
- Requirements:
674
- - Transformers (==4.45.0)
675
- - Gradio (>=5.12.0)
676
- - PyTorch (==2.3.0)
677
- - psutil (==5.9.5)
678
- - Accelerate (>=0.26.0)
679
-
680
- The pipeline processes all 114 chapters of the Quran sequentially, with memory and GPU resource management optimizations.
681
- Checkpoint download links are provided after every training chunk."""
682
- )
683
-
684
- if __name__ == "__main__":
685
- iface.launch()