# Code is copied from the gaussian-splatting/utils/loss_utils.py import torch import torch.nn.functional as F from torch.autograd import Variable from math import exp def l1_loss(network_output, gt, mean=True): return torch.abs((network_output - gt)).mean() if mean else torch.abs((network_output - gt)) def l2_loss(network_output, gt): return ((network_output - gt) ** 2).mean() def gaussian(window_size, sigma): gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)]) return gauss / gauss.sum() def create_window(window_size, channel): _1D_window = gaussian(window_size, 1.5).unsqueeze(1) _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) return window def ssim(img1, img2, window_size=11, size_average=True, mask = None): channel = img1.size(-3) window = create_window(window_size, channel) if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) return _ssim(img1, img2, window, window_size, channel, size_average, mask) def _ssim(img1, img2, window, window_size, channel, size_average=True, mask = None): mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 C1 = 0.01 ** 2 C2 = 0.03 ** 2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) if mask is not None: ssim_map = ssim_map * mask if size_average: return ssim_map.mean() else: return ssim_map.mean(1).mean(1).mean(1) def mse(img1, img2): return (((img1 - img2)) ** 2).view(img1.shape[0], -1).mean(1, keepdim=True) def psnr(img1, img2): """ Computes the Peak Signal-to-Noise Ratio (PSNR) between two single images. NOT BATCHED! Args: img1 (torch.Tensor): The first image tensor, with pixel values scaled between 0 and 1. Shape should be (channels, height, width). img2 (torch.Tensor): The second image tensor with the same shape as img1, used for comparison. Returns: torch.Tensor: A scalar tensor containing the PSNR value in decibels (dB). """ mse = (((img1 - img2)) ** 2).view(img1.shape[0], -1).mean(1, keepdim=True) return 20 * torch.log10(1.0 / torch.sqrt(mse)) def tv_loss(image): """ Computes the total variation (TV) loss for an image of shape [3, H, W]. Args: image (torch.Tensor): Input image of shape [3, H, W] Returns: torch.Tensor: Scalar value representing the total variation loss. """ # Ensure the image has the correct dimensions assert image.ndim == 3 and image.shape[0] == 3, "Input must be of shape [3, H, W]" # Compute the difference between adjacent pixels in the x-direction (width) diff_x = torch.abs(image[:, :, 1:] - image[:, :, :-1]) # Compute the difference between adjacent pixels in the y-direction (height) diff_y = torch.abs(image[:, 1:, :] - image[:, :-1, :]) # Sum the total variation in both directions tv_loss_value = torch.mean(diff_x) + torch.mean(diff_y) return tv_loss_value