Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import argparse | |
import cv2 | |
from joblib import delayed, Parallel | |
import json | |
from read_write_model import * | |
def get_scales(key, cameras, images, points3d_ordered, args): | |
image_meta = images[key] | |
cam_intrinsic = cameras[image_meta.camera_id] | |
pts_idx = images_metas[key].point3D_ids | |
mask = pts_idx >= 0 | |
mask *= pts_idx < len(points3d_ordered) | |
pts_idx = pts_idx[mask] | |
valid_xys = image_meta.xys[mask] | |
if len(pts_idx) > 0: | |
pts = points3d_ordered[pts_idx] | |
else: | |
pts = np.array([0, 0, 0]) | |
R = qvec2rotmat(image_meta.qvec) | |
pts = np.dot(pts, R.T) + image_meta.tvec | |
invcolmapdepth = 1. / pts[..., 2] | |
n_remove = len(image_meta.name.split('.')[-1]) + 1 | |
invmonodepthmap = cv2.imread(f"{args.depths_dir}/{image_meta.name[:-n_remove]}.png", cv2.IMREAD_UNCHANGED) | |
if invmonodepthmap is None: | |
return None | |
if invmonodepthmap.ndim != 2: | |
invmonodepthmap = invmonodepthmap[..., 0] | |
invmonodepthmap = invmonodepthmap.astype(np.float32) / (2**16) | |
s = invmonodepthmap.shape[0] / cam_intrinsic.height | |
maps = (valid_xys * s).astype(np.float32) | |
valid = ( | |
(maps[..., 0] >= 0) * | |
(maps[..., 1] >= 0) * | |
(maps[..., 0] < cam_intrinsic.width * s) * | |
(maps[..., 1] < cam_intrinsic.height * s) * (invcolmapdepth > 0)) | |
if valid.sum() > 10 and (invcolmapdepth.max() - invcolmapdepth.min()) > 1e-3: | |
maps = maps[valid, :] | |
invcolmapdepth = invcolmapdepth[valid] | |
invmonodepth = cv2.remap(invmonodepthmap, maps[..., 0], maps[..., 1], interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REPLICATE)[..., 0] | |
## Median / dev | |
t_colmap = np.median(invcolmapdepth) | |
s_colmap = np.mean(np.abs(invcolmapdepth - t_colmap)) | |
t_mono = np.median(invmonodepth) | |
s_mono = np.mean(np.abs(invmonodepth - t_mono)) | |
scale = s_colmap / s_mono | |
offset = t_colmap - t_mono * scale | |
else: | |
scale = 0 | |
offset = 0 | |
return {"image_name": image_meta.name[:-n_remove], "scale": scale, "offset": offset} | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--base_dir', default="../data/big_gaussians/standalone_chunks/campus") | |
parser.add_argument('--depths_dir', default="../data/big_gaussians/standalone_chunks/campus/depths_any") | |
parser.add_argument('--model_type', default="bin") | |
args = parser.parse_args() | |
cam_intrinsics, images_metas, points3d = read_model(os.path.join(args.base_dir, "sparse", "0"), ext=f".{args.model_type}") | |
pts_indices = np.array([points3d[key].id for key in points3d]) | |
pts_xyzs = np.array([points3d[key].xyz for key in points3d]) | |
points3d_ordered = np.zeros([pts_indices.max()+1, 3]) | |
points3d_ordered[pts_indices] = pts_xyzs | |
# depth_param_list = [get_scales(key, cam_intrinsics, images_metas, points3d_ordered, args) for key in images_metas] | |
depth_param_list = Parallel(n_jobs=-1, backend="threading")( | |
delayed(get_scales)(key, cam_intrinsics, images_metas, points3d_ordered, args) for key in images_metas | |
) | |
depth_params = { | |
depth_param["image_name"]: {"scale": depth_param["scale"], "offset": depth_param["offset"]} | |
for depth_param in depth_param_list if depth_param != None | |
} | |
with open(f"{args.base_dir}/sparse/0/depth_params.json", "w") as f: | |
json.dump(depth_params, f, indent=2) | |
print(0) | |