Spaces:
dylanebert
/
Running on Zero

EDGS / submodules /RoMa /experiments /train_tiny_roma_v1_outdoor.py
Olga
Initial commit
5f9d349
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import torch
from argparse import ArgumentParser
from pathlib import Path
import math
import numpy as np
from torch import nn
from torch.utils.data import ConcatDataset
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import json
import wandb
from PIL import Image
from torchvision.transforms import ToTensor
from romatch.benchmarks import MegadepthDenseBenchmark, ScanNetBenchmark
from romatch.benchmarks import Mega1500PoseLibBenchmark, ScanNetPoselibBenchmark
from romatch.datasets.megadepth import MegadepthBuilder
from romatch.losses.robust_loss_tiny_roma import RobustLosses
from romatch.benchmarks import MegaDepthPoseEstimationBenchmark, MegadepthDenseBenchmark, HpatchesHomogBenchmark
from romatch.train.train import train_k_steps
from romatch.checkpointing import CheckPoint
resolutions = {"low":(448, 448), "medium":(14*8*5, 14*8*5), "high":(14*8*6, 14*8*6), "xfeat": (600,800), "big": (768, 1024)}
def kde(x, std = 0.1):
# use a gaussian kernel to estimate density
x = x.half() # Do it in half precision TODO: remove hardcoding
scores = (-torch.cdist(x,x)**2/(2*std**2)).exp()
density = scores.sum(dim=-1)
return density
class BasicLayer(nn.Module):
"""
Basic Convolutional Layer: Conv2d -> BatchNorm -> ReLU
"""
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1, bias=False, relu = True):
super().__init__()
self.layer = nn.Sequential(
nn.Conv2d( in_channels, out_channels, kernel_size, padding = padding, stride=stride, dilation=dilation, bias = bias),
nn.BatchNorm2d(out_channels, affine=False),
nn.ReLU(inplace = True) if relu else nn.Identity()
)
def forward(self, x):
return self.layer(x)
class XFeatModel(nn.Module):
"""
Implementation of architecture described in
"XFeat: Accelerated Features for Lightweight Image Matching, CVPR 2024."
"""
def __init__(self, xfeat = None,
freeze_xfeat = True,
sample_mode = "threshold_balanced",
symmetric = False,
exact_softmax = False):
super().__init__()
if xfeat is None:
xfeat = torch.hub.load('verlab/accelerated_features', 'XFeat', pretrained = True, top_k = 4096).net
del xfeat.heatmap_head, xfeat.keypoint_head, xfeat.fine_matcher
if freeze_xfeat:
xfeat.train(False)
self.xfeat = [xfeat]# hide params from ddp
else:
self.xfeat = nn.ModuleList([xfeat])
self.freeze_xfeat = freeze_xfeat
match_dim = 256
self.coarse_matcher = nn.Sequential(
BasicLayer(64+64+2, match_dim,),
BasicLayer(match_dim, match_dim,),
BasicLayer(match_dim, match_dim,),
BasicLayer(match_dim, match_dim,),
nn.Conv2d(match_dim, 3, kernel_size=1, bias=True, padding=0))
fine_match_dim = 64
self.fine_matcher = nn.Sequential(
BasicLayer(24+24+2, fine_match_dim,),
BasicLayer(fine_match_dim, fine_match_dim,),
BasicLayer(fine_match_dim, fine_match_dim,),
BasicLayer(fine_match_dim, fine_match_dim,),
nn.Conv2d(fine_match_dim, 3, kernel_size=1, bias=True, padding=0),)
self.sample_mode = sample_mode
self.sample_thresh = 0.2
self.symmetric = symmetric
self.exact_softmax = exact_softmax
@property
def device(self):
return self.fine_matcher[-1].weight.device
def preprocess_tensor(self, x):
""" Guarantee that image is divisible by 32 to avoid aliasing artifacts. """
H, W = x.shape[-2:]
_H, _W = (H//32) * 32, (W//32) * 32
rh, rw = H/_H, W/_W
x = F.interpolate(x, (_H, _W), mode='bilinear', align_corners=False)
return x, rh, rw
def forward_single(self, x):
with torch.inference_mode(self.freeze_xfeat or not self.training):
xfeat = self.xfeat[0]
with torch.no_grad():
x = x.mean(dim=1, keepdim = True)
x = xfeat.norm(x)
#main backbone
x1 = xfeat.block1(x)
x2 = xfeat.block2(x1 + xfeat.skip1(x))
x3 = xfeat.block3(x2)
x4 = xfeat.block4(x3)
x5 = xfeat.block5(x4)
x4 = F.interpolate(x4, (x3.shape[-2], x3.shape[-1]), mode='bilinear')
x5 = F.interpolate(x5, (x3.shape[-2], x3.shape[-1]), mode='bilinear')
feats = xfeat.block_fusion( x3 + x4 + x5 )
if self.freeze_xfeat:
return x2.clone(), feats.clone()
return x2, feats
def to_pixel_coordinates(self, coords, H_A, W_A, H_B = None, W_B = None):
if coords.shape[-1] == 2:
return self._to_pixel_coordinates(coords, H_A, W_A)
if isinstance(coords, (list, tuple)):
kpts_A, kpts_B = coords[0], coords[1]
else:
kpts_A, kpts_B = coords[...,:2], coords[...,2:]
return self._to_pixel_coordinates(kpts_A, H_A, W_A), self._to_pixel_coordinates(kpts_B, H_B, W_B)
def _to_pixel_coordinates(self, coords, H, W):
kpts = torch.stack((W/2 * (coords[...,0]+1), H/2 * (coords[...,1]+1)),axis=-1)
return kpts
def pos_embed(self, corr_volume: torch.Tensor):
B, H1, W1, H0, W0 = corr_volume.shape
grid = torch.stack(
torch.meshgrid(
torch.linspace(-1+1/W1,1-1/W1, W1),
torch.linspace(-1+1/H1,1-1/H1, H1),
indexing = "xy"),
dim = -1).float().to(corr_volume).reshape(H1*W1, 2)
down = 4
if not self.training and not self.exact_softmax:
grid_lr = torch.stack(
torch.meshgrid(
torch.linspace(-1+down/W1,1-down/W1, W1//down),
torch.linspace(-1+down/H1,1-down/H1, H1//down),
indexing = "xy"),
dim = -1).float().to(corr_volume).reshape(H1*W1 //down**2, 2)
cv = corr_volume
best_match = cv.reshape(B,H1*W1,H0,W0).amax(dim=1) # B, HW, H, W
P_lowres = torch.cat((cv[:,::down,::down].reshape(B,H1*W1 // down**2,H0,W0), best_match[:,None]),dim=1).softmax(dim=1)
pos_embeddings = torch.einsum('bchw,cd->bdhw', P_lowres[:,:-1], grid_lr)
pos_embeddings += P_lowres[:,-1] * grid[best_match].permute(0,3,1,2)
else:
P = corr_volume.reshape(B,H1*W1,H0,W0).softmax(dim=1) # B, HW, H, W
pos_embeddings = torch.einsum('bchw,cd->bdhw', P, grid)
return pos_embeddings
def visualize_warp(self, warp, certainty, im_A = None, im_B = None,
im_A_path = None, im_B_path = None, symmetric = True, save_path = None, unnormalize = False):
device = warp.device
H,W2,_ = warp.shape
W = W2//2 if symmetric else W2
if im_A is None:
from PIL import Image
im_A, im_B = Image.open(im_A_path).convert("RGB"), Image.open(im_B_path).convert("RGB")
if not isinstance(im_A, torch.Tensor):
im_A = im_A.resize((W,H))
im_B = im_B.resize((W,H))
x_B = (torch.tensor(np.array(im_B)) / 255).to(device).permute(2, 0, 1)
if symmetric:
x_A = (torch.tensor(np.array(im_A)) / 255).to(device).permute(2, 0, 1)
else:
if symmetric:
x_A = im_A
x_B = im_B
im_A_transfer_rgb = F.grid_sample(
x_B[None], warp[:,:W, 2:][None], mode="bilinear", align_corners=False
)[0]
if symmetric:
im_B_transfer_rgb = F.grid_sample(
x_A[None], warp[:, W:, :2][None], mode="bilinear", align_corners=False
)[0]
warp_im = torch.cat((im_A_transfer_rgb,im_B_transfer_rgb),dim=2)
white_im = torch.ones((H,2*W),device=device)
else:
warp_im = im_A_transfer_rgb
white_im = torch.ones((H, W), device = device)
vis_im = certainty * warp_im + (1 - certainty) * white_im
if save_path is not None:
from romatch.utils import tensor_to_pil
tensor_to_pil(vis_im, unnormalize=unnormalize).save(save_path)
return vis_im
def corr_volume(self, feat0, feat1):
"""
input:
feat0 -> torch.Tensor(B, C, H, W)
feat1 -> torch.Tensor(B, C, H, W)
return:
corr_volume -> torch.Tensor(B, H, W, H, W)
"""
B, C, H0, W0 = feat0.shape
B, C, H1, W1 = feat1.shape
feat0 = feat0.view(B, C, H0*W0)
feat1 = feat1.view(B, C, H1*W1)
corr_volume = torch.einsum('bci,bcj->bji', feat0, feat1).reshape(B, H1, W1, H0 , W0)/math.sqrt(C) #16*16*16
return corr_volume
@torch.inference_mode()
def match_from_path(self, im0_path, im1_path):
device = self.device
im0 = ToTensor()(Image.open(im0_path))[None].to(device)
im1 = ToTensor()(Image.open(im1_path))[None].to(device)
return self.match(im0, im1, batched = False)
@torch.inference_mode()
def match(self, im0, im1, *args, batched = True):
# stupid
if isinstance(im0, (str, Path)):
return self.match_from_path(im0, im1)
elif isinstance(im0, Image.Image):
batched = False
device = self.device
im0 = ToTensor()(im0)[None].to(device)
im1 = ToTensor()(im1)[None].to(device)
B,C,H0,W0 = im0.shape
B,C,H1,W1 = im1.shape
self.train(False)
corresps = self.forward({"im_A":im0, "im_B":im1})
#return 1,1
flow = F.interpolate(
corresps[4]["flow"],
size = (H0, W0),
mode = "bilinear", align_corners = False).permute(0,2,3,1).reshape(B,H0,W0,2)
grid = torch.stack(
torch.meshgrid(
torch.linspace(-1+1/W0,1-1/W0, W0),
torch.linspace(-1+1/H0,1-1/H0, H0),
indexing = "xy"),
dim = -1).float().to(flow.device).expand(B, H0, W0, 2)
certainty = F.interpolate(corresps[4]["certainty"], size = (H0,W0), mode = "bilinear", align_corners = False)
warp, cert = torch.cat((grid, flow), dim = -1), certainty[:,0].sigmoid()
if batched:
return warp, cert
else:
return warp[0], cert[0]
def sample(
self,
matches,
certainty,
num=10000,
):
if "threshold" in self.sample_mode:
upper_thresh = self.sample_thresh
certainty = certainty.clone()
certainty[certainty > upper_thresh] = 1
matches, certainty = (
matches.reshape(-1, 4),
certainty.reshape(-1),
)
expansion_factor = 4 if "balanced" in self.sample_mode else 1
good_samples = torch.multinomial(certainty,
num_samples = min(expansion_factor*num, len(certainty)),
replacement=False)
good_matches, good_certainty = matches[good_samples], certainty[good_samples]
if "balanced" not in self.sample_mode:
return good_matches, good_certainty
density = kde(good_matches, std=0.1)
p = 1 / (density+1)
p[density < 10] = 1e-7 # Basically should have at least 10 perfect neighbours, or around 100 ok ones
balanced_samples = torch.multinomial(p,
num_samples = min(num,len(good_certainty)),
replacement=False)
return good_matches[balanced_samples], good_certainty[balanced_samples]
def forward(self, batch):
"""
input:
x -> torch.Tensor(B, C, H, W) grayscale or rgb images
return:
"""
im0 = batch["im_A"]
im1 = batch["im_B"]
corresps = {}
im0, rh0, rw0 = self.preprocess_tensor(im0)
im1, rh1, rw1 = self.preprocess_tensor(im1)
B, C, H0, W0 = im0.shape
B, C, H1, W1 = im1.shape
to_normalized = torch.tensor((2/W1, 2/H1, 1)).to(im0.device)[None,:,None,None]
if im0.shape[-2:] == im1.shape[-2:]:
x = torch.cat([im0, im1], dim=0)
x = self.forward_single(x)
feats_x0_c, feats_x1_c = x[1].chunk(2)
feats_x0_f, feats_x1_f = x[0].chunk(2)
else:
feats_x0_f, feats_x0_c = self.forward_single(im0)
feats_x1_f, feats_x1_c = self.forward_single(im1)
corr_volume = self.corr_volume(feats_x0_c, feats_x1_c)
coarse_warp = self.pos_embed(corr_volume)
coarse_matches = torch.cat((coarse_warp, torch.zeros_like(coarse_warp[:,-1:])), dim=1)
feats_x1_c_warped = F.grid_sample(feats_x1_c, coarse_matches.permute(0, 2, 3, 1)[...,:2], mode = 'bilinear', align_corners = False)
coarse_matches_delta = self.coarse_matcher(torch.cat((feats_x0_c, feats_x1_c_warped, coarse_warp), dim=1))
coarse_matches = coarse_matches + coarse_matches_delta * to_normalized
corresps[8] = {"flow": coarse_matches[:,:2], "certainty": coarse_matches[:,2:]}
coarse_matches_up = F.interpolate(coarse_matches, size = feats_x0_f.shape[-2:], mode = "bilinear", align_corners = False)
coarse_matches_up_detach = coarse_matches_up.detach()#note the detach
feats_x1_f_warped = F.grid_sample(feats_x1_f, coarse_matches_up_detach.permute(0, 2, 3, 1)[...,:2], mode = 'bilinear', align_corners = False)
fine_matches_delta = self.fine_matcher(torch.cat((feats_x0_f, feats_x1_f_warped, coarse_matches_up_detach[:,:2]), dim=1))
fine_matches = coarse_matches_up_detach+fine_matches_delta * to_normalized
corresps[4] = {"flow": fine_matches[:,:2], "certainty": fine_matches[:,2:]}
return corresps
def train(args):
rank = 0
gpus = 1
device_id = rank % torch.cuda.device_count()
romatch.LOCAL_RANK = 0
torch.cuda.set_device(device_id)
resolution = "big"
wandb_log = not args.dont_log_wandb
experiment_name = Path(__file__).stem
wandb_mode = "online" if wandb_log and rank == 0 else "disabled"
wandb.init(project="romatch", entity=args.wandb_entity, name=experiment_name, reinit=False, mode = wandb_mode)
checkpoint_dir = "workspace/checkpoints/"
h,w = resolutions[resolution]
model = XFeatModel(freeze_xfeat = False).to(device_id)
# Num steps
global_step = 0
batch_size = args.gpu_batch_size
step_size = gpus*batch_size
romatch.STEP_SIZE = step_size
N = 2_000_000 # 2M pairs
# checkpoint every
k = 25000 // romatch.STEP_SIZE
# Data
mega = MegadepthBuilder(data_root="data/megadepth", loftr_ignore=True, imc21_ignore = True)
use_horizontal_flip_aug = True
normalize = False # don't imgnet normalize
rot_prob = 0
depth_interpolation_mode = "bilinear"
megadepth_train1 = mega.build_scenes(
split="train_loftr", min_overlap=0.01, shake_t=32, use_horizontal_flip_aug = use_horizontal_flip_aug, rot_prob = rot_prob,
ht=h,wt=w, normalize = normalize
)
megadepth_train2 = mega.build_scenes(
split="train_loftr", min_overlap=0.35, shake_t=32, use_horizontal_flip_aug = use_horizontal_flip_aug, rot_prob = rot_prob,
ht=h,wt=w, normalize = normalize
)
megadepth_train = ConcatDataset(megadepth_train1 + megadepth_train2)
mega_ws = mega.weight_scenes(megadepth_train, alpha=0.75)
# Loss and optimizer
depth_loss = RobustLosses(
ce_weight=0.01,
local_dist={4:4},
depth_interpolation_mode=depth_interpolation_mode,
alpha = {4:0.15, 8:0.15},
c = 1e-4,
epe_mask_prob_th = 0.001,
)
parameters = [
{"params": model.parameters(), "lr": romatch.STEP_SIZE * 1e-4 / 8},
]
optimizer = torch.optim.AdamW(parameters, weight_decay=0.01)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=[(9*N/romatch.STEP_SIZE)//10])
#megadense_benchmark = MegadepthDenseBenchmark("data/megadepth", num_samples = 1000, h=h,w=w)
mega1500_benchmark = Mega1500PoseLibBenchmark("data/megadepth", num_ransac_iter = 1, test_every = 30)
checkpointer = CheckPoint(checkpoint_dir, experiment_name)
model, optimizer, lr_scheduler, global_step = checkpointer.load(model, optimizer, lr_scheduler, global_step)
romatch.GLOBAL_STEP = global_step
grad_scaler = torch.cuda.amp.GradScaler(growth_interval=1_000_000)
grad_clip_norm = 0.01
#megadense_benchmark.benchmark(model)
for n in range(romatch.GLOBAL_STEP, N, k * romatch.STEP_SIZE):
mega_sampler = torch.utils.data.WeightedRandomSampler(
mega_ws, num_samples = batch_size * k, replacement=False
)
mega_dataloader = iter(
torch.utils.data.DataLoader(
megadepth_train,
batch_size = batch_size,
sampler = mega_sampler,
num_workers = 8,
)
)
train_k_steps(
n, k, mega_dataloader, model, depth_loss, optimizer, lr_scheduler, grad_scaler, grad_clip_norm = grad_clip_norm,
)
checkpointer.save(model, optimizer, lr_scheduler, romatch.GLOBAL_STEP)
wandb.log(mega1500_benchmark.benchmark(model, model_name=experiment_name), step = romatch.GLOBAL_STEP)
def test_mega_8_scenes(model, name):
mega_8_scenes_benchmark = MegaDepthPoseEstimationBenchmark("data/megadepth",
scene_names=['mega_8_scenes_0019_0.1_0.3.npz',
'mega_8_scenes_0025_0.1_0.3.npz',
'mega_8_scenes_0021_0.1_0.3.npz',
'mega_8_scenes_0008_0.1_0.3.npz',
'mega_8_scenes_0032_0.1_0.3.npz',
'mega_8_scenes_1589_0.1_0.3.npz',
'mega_8_scenes_0063_0.1_0.3.npz',
'mega_8_scenes_0024_0.1_0.3.npz',
'mega_8_scenes_0019_0.3_0.5.npz',
'mega_8_scenes_0025_0.3_0.5.npz',
'mega_8_scenes_0021_0.3_0.5.npz',
'mega_8_scenes_0008_0.3_0.5.npz',
'mega_8_scenes_0032_0.3_0.5.npz',
'mega_8_scenes_1589_0.3_0.5.npz',
'mega_8_scenes_0063_0.3_0.5.npz',
'mega_8_scenes_0024_0.3_0.5.npz'])
mega_8_scenes_results = mega_8_scenes_benchmark.benchmark(model, model_name=name)
print(mega_8_scenes_results)
json.dump(mega_8_scenes_results, open(f"results/mega_8_scenes_{name}.json", "w"))
def test_mega1500(model, name):
mega1500_benchmark = MegaDepthPoseEstimationBenchmark("data/megadepth")
mega1500_results = mega1500_benchmark.benchmark(model, model_name=name)
json.dump(mega1500_results, open(f"results/mega1500_{name}.json", "w"))
def test_mega1500_poselib(model, name):
mega1500_benchmark = Mega1500PoseLibBenchmark("data/megadepth", num_ransac_iter = 1, test_every = 1)
mega1500_results = mega1500_benchmark.benchmark(model, model_name=name)
json.dump(mega1500_results, open(f"results/mega1500_poselib_{name}.json", "w"))
def test_mega_8_scenes_poselib(model, name):
mega1500_benchmark = Mega1500PoseLibBenchmark("data/megadepth", num_ransac_iter = 1, test_every = 1,
scene_names=['mega_8_scenes_0019_0.1_0.3.npz',
'mega_8_scenes_0025_0.1_0.3.npz',
'mega_8_scenes_0021_0.1_0.3.npz',
'mega_8_scenes_0008_0.1_0.3.npz',
'mega_8_scenes_0032_0.1_0.3.npz',
'mega_8_scenes_1589_0.1_0.3.npz',
'mega_8_scenes_0063_0.1_0.3.npz',
'mega_8_scenes_0024_0.1_0.3.npz',
'mega_8_scenes_0019_0.3_0.5.npz',
'mega_8_scenes_0025_0.3_0.5.npz',
'mega_8_scenes_0021_0.3_0.5.npz',
'mega_8_scenes_0008_0.3_0.5.npz',
'mega_8_scenes_0032_0.3_0.5.npz',
'mega_8_scenes_1589_0.3_0.5.npz',
'mega_8_scenes_0063_0.3_0.5.npz',
'mega_8_scenes_0024_0.3_0.5.npz'])
mega1500_results = mega1500_benchmark.benchmark(model, model_name=name)
json.dump(mega1500_results, open(f"results/mega_8_scenes_poselib_{name}.json", "w"))
def test_scannet_poselib(model, name):
scannet_benchmark = ScanNetPoselibBenchmark("data/scannet")
scannet_results = scannet_benchmark.benchmark(model)
json.dump(scannet_results, open(f"results/scannet_{name}.json", "w"))
def test_scannet(model, name):
scannet_benchmark = ScanNetBenchmark("data/scannet")
scannet_results = scannet_benchmark.benchmark(model)
json.dump(scannet_results, open(f"results/scannet_{name}.json", "w"))
if __name__ == "__main__":
os.environ["TORCH_CUDNN_V8_API_ENABLED"] = "1" # For BF16 computations
os.environ["OMP_NUM_THREADS"] = "16"
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
import romatch
parser = ArgumentParser()
parser.add_argument("--only_test", action='store_true')
parser.add_argument("--debug_mode", action='store_true')
parser.add_argument("--dont_log_wandb", action='store_true')
parser.add_argument("--train_resolution", default='medium')
parser.add_argument("--gpu_batch_size", default=8, type=int)
parser.add_argument("--wandb_entity", required = False)
args, _ = parser.parse_known_args()
romatch.DEBUG_MODE = args.debug_mode
if not args.only_test:
train(args)
experiment_name = "tiny_roma_v1_outdoor"#Path(__file__).stem
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = XFeatModel(freeze_xfeat=False, exact_softmax=False).to(device)
model.load_state_dict(torch.load(f"{experiment_name}.pth"))
test_mega1500_poselib(model, experiment_name)