Spaces:
dylanebert
/
Running on Zero

EDGS / app.py
magistrkoljan's picture
Update app.py
c550140 verified
import spaces
import torch
import os
import shutil
import tempfile
import argparse
import gradio as gr
import sys
import io
import subprocess
from PIL import Image
import numpy as np
from hydra import initialize, compose
import hydra
from omegaconf import OmegaConf
import time
import contextlib
import base64
def install_submodules():
subprocess.check_call(['pip', 'install', './submodules/RoMa'])
STATIC_FILE_SERVING_FOLDER = "./served_files"
MODEL_PATH = None
os.makedirs(STATIC_FILE_SERVING_FOLDER, exist_ok=True)
trainer = None
class Tee(io.TextIOBase):
def __init__(self, *streams):
self.streams = streams
def write(self, data):
for stream in self.streams:
stream.write(data)
return len(data)
def flush(self):
for stream in self.streams:
stream.flush()
def capture_logs(func, *args, **kwargs):
log_capture_string = io.StringIO()
tee = Tee(sys.__stdout__, log_capture_string)
with contextlib.redirect_stdout(tee):
result = func(*args, **kwargs)
return result, log_capture_string.getvalue()
@spaces.GPU(duration=256)
# Training Pipeline
def run_training_pipeline(scene_dir,
num_ref_views=16,
num_corrs_per_view=20000,
num_steps=1_000,
mode_toggle="Ours (EDGS)"):
with initialize(config_path="./configs", version_base="1.1"):
cfg = compose(config_name="train")
scene_name = os.path.basename(scene_dir)
model_output_dir = f"./outputs/{scene_name}_trained"
cfg.wandb.mode = "disabled"
cfg.gs.dataset.model_path = model_output_dir
cfg.gs.dataset.source_path = scene_dir
cfg.gs.dataset.images = "images"
cfg.gs.opt.TEST_CAM_IDX_TO_LOG = 12
cfg.train.gs_epochs = 30000
if mode_toggle=="Ours (EDGS)":
cfg.gs.opt.opacity_reset_interval = 1_000_000
cfg.train.reduce_opacity = True
cfg.train.no_densify = True
cfg.train.max_lr = True
cfg.init_wC.use = True
cfg.init_wC.matches_per_ref = num_corrs_per_view
cfg.init_wC.nns_per_ref = 1
cfg.init_wC.num_refs = num_ref_views
cfg.init_wC.add_SfM_init = False
cfg.init_wC.scaling_factor = 0.00077 * 2.
set_seed(cfg.seed)
os.makedirs(cfg.gs.dataset.model_path, exist_ok=True)
global trainer
global MODEL_PATH
generator3dgs = hydra.utils.instantiate(cfg.gs, do_train_test_split=False)
trainer = EDGSTrainer(GS=generator3dgs, training_config=cfg.gs.opt, device=cfg.device, log_wandb=cfg.wandb.mode != 'disabled')
# Disable evaluation and saving
trainer.saving_iterations = []
trainer.evaluate_iterations = []
# Initialize
trainer.timer.start()
start_time = time.time()
trainer.init_with_corr(cfg.init_wC, roma_model=roma_model)
time_for_init = time.time()-start_time
viewpoint_cams = trainer.GS.scene.getTrainCameras()
path_cameras = generate_fully_smooth_cameras_with_tsp(existing_cameras=viewpoint_cams,
n_selected=6,
n_points_per_segment=30,
closed=False)
path_cameras = path_cameras + path_cameras[::-1]
path_renderings = []
idx = 0
# Visualize after init
for _ in range(120):
with torch.no_grad():
viewpoint_cam = path_cameras[idx]
idx = (idx + 1) % len(path_cameras)
render_pkg = trainer.GS(viewpoint_cam)
image = render_pkg["render"]
image_np = np.clip(image.detach().cpu().numpy().transpose(1, 2, 0), 0, 1)
image_np = (image_np * 255).astype(np.uint8)
path_renderings.append(put_text_on_image(img=image_np,
text=f"Init stage.\nTime:{time_for_init:.3f}s. "))
path_renderings = path_renderings + [put_text_on_image(img=image_np, text=f"Start fitting.\nTime:{time_for_init:.3f}s. ")]*30
# Train and save visualizations during training.
start_time = time.time()
for _ in range(int(num_steps//10)):
with torch.no_grad():
viewpoint_cam = path_cameras[idx]
idx = (idx + 1) % len(path_cameras)
render_pkg = trainer.GS(viewpoint_cam)
image = render_pkg["render"]
image_np = np.clip(image.detach().cpu().numpy().transpose(1, 2, 0), 0, 1)
image_np = (image_np * 255).astype(np.uint8)
path_renderings.append(put_text_on_image(
img=image_np,
text=f"Fitting stage.\nTime:{time_for_init + time.time()-start_time:.3f}s. "))
cfg.train.gs_epochs = 10
trainer.train(cfg.train)
print(f"Time elapsed: {(time_for_init + time.time()-start_time):.2f}s.")
# if (cfg.init_wC.use == False) and (time_for_init + time.time()-start_time) > 60:
# break
final_time = time.time()
# Add static frame. To highlight we're done
path_renderings += [put_text_on_image(
img=image_np, text=f"Done.\nTime:{time_for_init + final_time -start_time:.3f}s. ")]*30
# Final rendering at the end.
for _ in range(len(path_cameras)):
with torch.no_grad():
viewpoint_cam = path_cameras[idx]
idx = (idx + 1) % len(path_cameras)
render_pkg = trainer.GS(viewpoint_cam)
image = render_pkg["render"]
image_np = np.clip(image.detach().cpu().numpy().transpose(1, 2, 0), 0, 1)
image_np = (image_np * 255).astype(np.uint8)
path_renderings.append(put_text_on_image(img=image_np,
text=f"Final result.\nTime:{time_for_init + final_time -start_time:.3f}s. "))
trainer.save_model()
final_video_path = os.path.join(STATIC_FILE_SERVING_FOLDER, f"{scene_name}_final.mp4")
save_numpy_frames_as_mp4(frames=path_renderings, output_path=final_video_path, fps=30, center_crop=0.85)
MODEL_PATH = cfg.gs.dataset.model_path
ply_path = os.path.join(cfg.gs.dataset.model_path, f"point_cloud/iteration_{trainer.gs_step}/point_cloud.ply")
shutil.copy(ply_path, os.path.join(STATIC_FILE_SERVING_FOLDER, "point_cloud_final.ply"))
return final_video_path, ply_path
# Gradio Interface
def gradio_interface(input_path, num_ref_views, num_corrs, num_steps):
images, scene_dir = run_full_pipeline(input_path, num_ref_views, num_corrs, max_size=1024)
shutil.copytree(scene_dir, STATIC_FILE_SERVING_FOLDER+'/scene_colmaped', dirs_exist_ok=True)
(final_video_path, ply_path), log_output = capture_logs(run_training_pipeline,
scene_dir,
num_ref_views,
num_corrs,
num_steps
)
images_rgb = [img[:, :, ::-1] for img in images]
return images_rgb, final_video_path, scene_dir, ply_path, log_output
# Dummy Render Functions
@spaces.GPU(duration=60)
def render_all_views(scene_dir):
viewpoint_cams = trainer.GS.scene.getTrainCameras()
path_cameras = generate_fully_smooth_cameras_with_tsp(existing_cameras=viewpoint_cams,
n_selected=8,
n_points_per_segment=60,
closed=False)
path_cameras = path_cameras + path_cameras[::-1]
path_renderings = []
with torch.no_grad():
for viewpoint_cam in path_cameras:
render_pkg = trainer.GS(viewpoint_cam)
image = render_pkg["render"]
image_np = np.clip(image.detach().cpu().numpy().transpose(1, 2, 0), 0, 1)
image_np = (image_np * 255).astype(np.uint8)
path_renderings.append(image_np)
save_numpy_frames_as_mp4(frames=path_renderings,
output_path=os.path.join(STATIC_FILE_SERVING_FOLDER, "render_all_views.mp4"),
fps=30,
center_crop=0.85)
return os.path.join(STATIC_FILE_SERVING_FOLDER, "render_all_views.mp4")
@spaces.GPU(duration=60)
def render_circular_path(scene_dir):
viewpoint_cams = trainer.GS.scene.getTrainCameras()
path_cameras = generate_circular_camera_path(existing_cameras=viewpoint_cams,
N=240,
radius_scale=0.65,
d=0)
path_renderings = []
with torch.no_grad():
for viewpoint_cam in path_cameras:
render_pkg = trainer.GS(viewpoint_cam)
image = render_pkg["render"]
image_np = np.clip(image.detach().cpu().numpy().transpose(1, 2, 0), 0, 1)
image_np = (image_np * 255).astype(np.uint8)
path_renderings.append(image_np)
save_numpy_frames_as_mp4(frames=path_renderings,
output_path=os.path.join(STATIC_FILE_SERVING_FOLDER, "render_circular_path.mp4"),
fps=30,
center_crop=0.85)
return os.path.join(STATIC_FILE_SERVING_FOLDER, "render_circular_path.mp4")
# Download Functions
def download_cameras():
path = os.path.join(MODEL_PATH, "cameras.json")
return f"[πŸ“₯ Download Cameras.json](file={path})"
def download_model():
path = os.path.join(STATIC_FILE_SERVING_FOLDER, "point_cloud_final.ply")
return f"[πŸ“₯ Download Pretrained Model (.ply)](file={path})"
# Full pipeline helpers
def run_full_pipeline(input_path, num_ref_views, num_corrs, max_size=1024):
tmpdirname = tempfile.mkdtemp()
scene_dir = os.path.join(tmpdirname, "scene")
os.makedirs(scene_dir, exist_ok=True)
selected_frames = process_input(input_path, num_ref_views, scene_dir, max_size)
run_colmap_on_scene(scene_dir)
return selected_frames, scene_dir
# Preprocess Input
def process_input(input_path, num_ref_views, output_dir, max_size=1024):
if isinstance(input_path, (str, os.PathLike)):
if os.path.isdir(input_path):
frames = []
for img_file in sorted(os.listdir(input_path)):
if img_file.lower().endswith(('jpg', 'jpeg', 'png')):
img = Image.open(os.path.join(output_dir, img_file)).convert('RGB')
img.thumbnail((1024, 1024))
frames.append(np.array(img))
else:
frames = read_video_frames(video_input=input_path, max_size=max_size)
else:
frames = read_video_frames(video_input=input_path, max_size=max_size)
frames_scores = preprocess_frames(frames)
selected_frames_indices = select_optimal_frames(scores=frames_scores, k=min(num_ref_views, len(frames)))
selected_frames = [frames[frame_idx] for frame_idx in selected_frames_indices]
save_frames_to_scene_dir(frames=selected_frames, scene_dir=output_dir)
return selected_frames
def preprocess_input(input_path, num_ref_views, max_size=1024):
tmpdirname = tempfile.mkdtemp()
scene_dir = os.path.join(tmpdirname, "scene")
os.makedirs(scene_dir, exist_ok=True)
selected_frames = process_input(input_path, num_ref_views, scene_dir, max_size)
run_colmap_on_scene(scene_dir)
return selected_frames, scene_dir
def start_training(scene_dir, num_ref_views, num_corrs, num_steps):
return capture_logs(run_training_pipeline, scene_dir, num_ref_views, num_corrs, num_steps)
# Gradio App
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=6):
gr.Markdown("""
## <span style='font-size: 20px;'>πŸ“„ EDGS: Eliminating Densification for Efficient Convergence of 3DGS</span>
πŸ”— <a href='https://compvis.github.io/EDGS' target='_blank'>Project Page</a>
""", elem_id="header")
gr.Markdown("""
### <span style='font-size: 22px;'>πŸ› οΈ How to Use This Demo</span>
1. Upload a **front-facing video** or **a folder of images** of a **static** scene.
2. Use the sliders to configure the number of reference views, correspondences, and optimization steps.
3. First press on preprocess Input to extract frames from video(for videos) and COLMAP frames.
4. Then click **πŸš€ Start Reconstruction** to actually launch the reconstruction pipeline.
5. Watch the training visualization and explore the 3D model.
‼️ **If you see nothing in the 3D model viewer**, try rotating or zooming β€” sometimes the initial camera orientation is off.
βœ… Best for scenes with small camera motion.
❗ For full 360Β° or large-scale scenes, we recommend the Colab version (see project page).
""", elem_id="quickstart")
scene_dir_state = gr.State()
ply_model_state = gr.State()
with gr.Row():
with gr.Column(scale=2):
input_file = gr.File(label="Upload Video or Images",
file_types=[".mp4", ".avi", ".mov", ".png", ".jpg", ".jpeg"],
file_count="multiple")
gr.Examples(
examples = [
[["assets/examples/video_bakery.mp4"]],
[["assets/examples/video_flowers.mp4"]],
[["assets/examples/video_fruits.mp4"]],
[["assets/examples/video_plant.mp4"]],
[["assets/examples/video_salad.mp4"]],
[["assets/examples/video_tram.mp4"]],
[["assets/examples/video_tulips.mp4"]]
],
inputs=[input_file],
label="🎞️ Alternatively, try an Example Video",
examples_per_page=4
)
ref_slider = gr.Slider(4, 32, value=16, step=1, label="Number of Reference Views")
corr_slider = gr.Slider(5000, 30000, value=20000, step=1000, label="Correspondences per Reference View")
fit_steps_slider = gr.Slider(100, 5000, value=400, step=100, label="Number of optimization steps")
preprocess_button = gr.Button("πŸ“Έ Preprocess Input")
start_button = gr.Button("πŸš€ Start Reconstruction", interactive=False)
with gr.Column(scale=3):
gr.Markdown("### πŸ‹οΈ Training Visualization")
gallery = gr.Gallery(label="Selected Reference Views", columns=4, height=300)
video_output = gr.Video(label="Training Video", autoplay=True)
#render_all_views_button = gr.Button("πŸŽ₯ Render All-Views Path")
#render_circular_path_button = gr.Button("πŸŽ₯ Render Circular Path")
#rendered_video_output = gr.Video(label="Rendered Video", autoplay=True)
with gr.Column(scale=5):
gr.Markdown("### 🌐 Final 3D Model")
model3d_viewer = gr.Model3D(label="3D Model Viewer")
gr.Markdown("### πŸ“¦ Output Files")
with gr.Row(height=40):
#with gr.Column():
#gr.Markdown(value=f"[πŸ“₯ Download .ply](file/point_cloud_final.ply)")
#download_cameras_button = gr.Button("πŸ“₯ Download Cameras.json")
#download_cameras_file = gr.File(label="πŸ“„ Cameras.json")
with gr.Column():
download_model_button = gr.Button("πŸ“₯ Download Pretrained Model (.ply)")
download_model_file = gr.File(label="πŸ“„ Pretrained Model (.ply)")
log_output_box = gr.Textbox(label="πŸ–₯️ Log", lines=10, interactive=False)
def on_preprocess_click(input_file, num_ref_views):
images, scene_dir = preprocess_input(input_file, num_ref_views)
return gr.update(value=[x[...,::-1] for x in images]), scene_dir, gr.update(interactive=True)
def on_start_click(scene_dir, num_ref_views, num_corrs, num_steps):
(video_path, ply_path), logs = start_training(scene_dir, num_ref_views, num_corrs, num_steps)
return video_path, ply_path, logs
preprocess_button.click(
fn=on_preprocess_click,
inputs=[input_file, ref_slider],
outputs=[gallery, scene_dir_state, start_button]
)
start_button.click(
fn=on_start_click,
inputs=[scene_dir_state, ref_slider, corr_slider, fit_steps_slider],
outputs=[video_output, model3d_viewer, log_output_box]
)
#render_all_views_button.click(fn=render_all_views, inputs=[scene_dir_state], outputs=[rendered_video_output])
#render_circular_path_button.click(fn=render_circular_path, inputs=[scene_dir_state], outputs=[rendered_video_output])
#download_cameras_button.click(fn=lambda: os.path.join(MODEL_PATH, "cameras.json"), inputs=[], outputs=[download_cameras_file])
download_model_button.click(fn=lambda: os.path.join(STATIC_FILE_SERVING_FOLDER, "point_cloud_final.ply"), inputs=[], outputs=[download_model_file])
gr.Markdown("""
---
### <span style='font-size: 20px;'>πŸ“– Detailed Overview</span>
If you uploaded a video, it will be automatically cut into a smaller number of frames (default: 16).
The model pipeline:
1. 🧠 Runs PyCOLMAP to estimate camera intrinsics & poses (~3–7 seconds for <16 images).
2. πŸ” Computes 2D-2D correspondences between views. More correspondences generally improve quality.
3. πŸ”§ Optimizes a 3D Gaussian Splatting model for several steps.
### πŸŽ₯ Training Visualization
You will see a visualization of the entire training process in the "Training Video" pane.
### πŸŒ€ 3D Model
The 3D model is shown in the right viewer. You can explore it interactively:
- On PC: WASD keys, arrow keys, and mouse clicks
- On mobile: pan and pinch to zoom
πŸ•’ Note: the 3D viewer takes a few extra seconds (~5s) to display after training ends.
---
""", elem_id="details")
if __name__ == "__main__":
install_submodules()
from source.utils_aux import set_seed
from source.utils_preprocess import read_video_frames, preprocess_frames, select_optimal_frames, save_frames_to_scene_dir, run_colmap_on_scene
from source.trainer import EDGSTrainer
from source.visualization import generate_circular_camera_path, save_numpy_frames_as_mp4, generate_fully_smooth_cameras_with_tsp, put_text_on_image
# Init RoMA model:
sys.path.append('../submodules/RoMa')
from romatch import roma_outdoor, roma_indoor
roma_model = roma_indoor(device="cpu")
roma_model = roma_model.to("cuda")
roma_model.upsample_preds = False
roma_model.symmetric = False
demo.launch(share=True)