Spaces:
dylanebert
/
Running on Zero

File size: 13,404 Bytes
5f9d349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  [email protected]
#

import os
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import render, network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state, get_expon_lr_func
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
try:
    from torch.utils.tensorboard import SummaryWriter
    TENSORBOARD_FOUND = True
except ImportError:
    TENSORBOARD_FOUND = False

try:
    from fused_ssim import fused_ssim
    FUSED_SSIM_AVAILABLE = True
except:
    FUSED_SSIM_AVAILABLE = False

try:
    from diff_gaussian_rasterization import SparseGaussianAdam
    SPARSE_ADAM_AVAILABLE = True
except:
    SPARSE_ADAM_AVAILABLE = False

def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from):

    if not SPARSE_ADAM_AVAILABLE and opt.optimizer_type == "sparse_adam":
        sys.exit(f"Trying to use sparse adam but it is not installed, please install the correct rasterizer using pip install [3dgs_accel].")

    first_iter = 0
    tb_writer = prepare_output_and_logger(dataset)
    gaussians = GaussianModel(dataset.sh_degree, opt.optimizer_type)
    scene = Scene(dataset, gaussians)
    gaussians.training_setup(opt)
    if checkpoint:
        (model_params, first_iter) = torch.load(checkpoint)
        gaussians.restore(model_params, opt)

    bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
    background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")

    iter_start = torch.cuda.Event(enable_timing = True)
    iter_end = torch.cuda.Event(enable_timing = True)

    use_sparse_adam = opt.optimizer_type == "sparse_adam" and SPARSE_ADAM_AVAILABLE 
    depth_l1_weight = get_expon_lr_func(opt.depth_l1_weight_init, opt.depth_l1_weight_final, max_steps=opt.iterations)

    viewpoint_stack = scene.getTrainCameras().copy()
    viewpoint_indices = list(range(len(viewpoint_stack)))
    ema_loss_for_log = 0.0
    ema_Ll1depth_for_log = 0.0

    progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
    first_iter += 1
    for iteration in range(first_iter, opt.iterations + 1):
        if network_gui.conn == None:
            network_gui.try_connect()
        while network_gui.conn != None:
            try:
                net_image_bytes = None
                custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
                if custom_cam != None:
                    net_image = render(custom_cam, gaussians, pipe, background, scaling_modifier=scaling_modifer, use_trained_exp=dataset.train_test_exp, separate_sh=SPARSE_ADAM_AVAILABLE)["render"]
                    net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
                network_gui.send(net_image_bytes, dataset.source_path)
                if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
                    break
            except Exception as e:
                network_gui.conn = None

        iter_start.record()

        gaussians.update_learning_rate(iteration)

        # Every 1000 its we increase the levels of SH up to a maximum degree
        if iteration % 1000 == 0:
            gaussians.oneupSHdegree()

        # Pick a random Camera
        if not viewpoint_stack:
            viewpoint_stack = scene.getTrainCameras().copy()
            viewpoint_indices = list(range(len(viewpoint_stack)))
        rand_idx = randint(0, len(viewpoint_indices) - 1)
        viewpoint_cam = viewpoint_stack.pop(rand_idx)
        vind = viewpoint_indices.pop(rand_idx)

        # Render
        if (iteration - 1) == debug_from:
            pipe.debug = True

        bg = torch.rand((3), device="cuda") if opt.random_background else background

        render_pkg = render(viewpoint_cam, gaussians, pipe, bg, use_trained_exp=dataset.train_test_exp, separate_sh=SPARSE_ADAM_AVAILABLE)
        image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]

        if viewpoint_cam.alpha_mask is not None:
            alpha_mask = viewpoint_cam.alpha_mask.cuda()
            image *= alpha_mask

        # Loss
        gt_image = viewpoint_cam.original_image.cuda()
        Ll1 = l1_loss(image, gt_image)
        if FUSED_SSIM_AVAILABLE:
            ssim_value = fused_ssim(image.unsqueeze(0), gt_image.unsqueeze(0))
        else:
            ssim_value = ssim(image, gt_image)

        loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim_value)

        # Depth regularization
        Ll1depth_pure = 0.0
        if depth_l1_weight(iteration) > 0 and viewpoint_cam.depth_reliable:
            invDepth = render_pkg["depth"]
            mono_invdepth = viewpoint_cam.invdepthmap.cuda()
            depth_mask = viewpoint_cam.depth_mask.cuda()

            Ll1depth_pure = torch.abs((invDepth  - mono_invdepth) * depth_mask).mean()
            Ll1depth = depth_l1_weight(iteration) * Ll1depth_pure 
            loss += Ll1depth
            Ll1depth = Ll1depth.item()
        else:
            Ll1depth = 0

        loss.backward()

        iter_end.record()

        with torch.no_grad():
            # Progress bar
            ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
            ema_Ll1depth_for_log = 0.4 * Ll1depth + 0.6 * ema_Ll1depth_for_log

            if iteration % 10 == 0:
                progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}", "Depth Loss": f"{ema_Ll1depth_for_log:.{7}f}"})
                progress_bar.update(10)
            if iteration == opt.iterations:
                progress_bar.close()

            # Log and save
            training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background, 1., SPARSE_ADAM_AVAILABLE, None, dataset.train_test_exp), dataset.train_test_exp)
            if (iteration in saving_iterations):
                print("\n[ITER {}] Saving Gaussians".format(iteration))
                scene.save(iteration)

            # Densification
            if iteration < opt.densify_until_iter:
                # Keep track of max radii in image-space for pruning
                gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
                gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)

                if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
                    size_threshold = 20 if iteration > opt.opacity_reset_interval else None
                    gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold, radii)
                
                if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
                    gaussians.reset_opacity()

            # Optimizer step
            if iteration < opt.iterations:
                gaussians.exposure_optimizer.step()
                gaussians.exposure_optimizer.zero_grad(set_to_none = True)
                if use_sparse_adam:
                    visible = radii > 0
                    gaussians.optimizer.step(visible, radii.shape[0])
                    gaussians.optimizer.zero_grad(set_to_none = True)
                else:
                    gaussians.optimizer.step()
                    gaussians.optimizer.zero_grad(set_to_none = True)

            if (iteration in checkpoint_iterations):
                print("\n[ITER {}] Saving Checkpoint".format(iteration))
                torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")

def prepare_output_and_logger(args):    
    if not args.model_path:
        if os.getenv('OAR_JOB_ID'):
            unique_str=os.getenv('OAR_JOB_ID')
        else:
            unique_str = str(uuid.uuid4())
        args.model_path = os.path.join("./output/", unique_str[0:10])
        
    # Set up output folder
    print("Output folder: {}".format(args.model_path))
    os.makedirs(args.model_path, exist_ok = True)
    with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
        cfg_log_f.write(str(Namespace(**vars(args))))

    # Create Tensorboard writer
    tb_writer = None
    if TENSORBOARD_FOUND:
        tb_writer = SummaryWriter(args.model_path)
    else:
        print("Tensorboard not available: not logging progress")
    return tb_writer

def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs, train_test_exp):
    if tb_writer:
        tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
        tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
        tb_writer.add_scalar('iter_time', elapsed, iteration)

    # Report test and samples of training set
    if iteration in testing_iterations:
        torch.cuda.empty_cache()
        validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()}, 
                              {'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})

        for config in validation_configs:
            if config['cameras'] and len(config['cameras']) > 0:
                l1_test = 0.0
                psnr_test = 0.0
                for idx, viewpoint in enumerate(config['cameras']):
                    image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs)["render"], 0.0, 1.0)
                    gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
                    if train_test_exp:
                        image = image[..., image.shape[-1] // 2:]
                        gt_image = gt_image[..., gt_image.shape[-1] // 2:]
                    if tb_writer and (idx < 5):
                        tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
                        if iteration == testing_iterations[0]:
                            tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
                    l1_test += l1_loss(image, gt_image).mean().double()
                    psnr_test += psnr(image, gt_image).mean().double()
                psnr_test /= len(config['cameras'])
                l1_test /= len(config['cameras'])          
                print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
                if tb_writer:
                    tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
                    tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)

        if tb_writer:
            tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
            tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
        torch.cuda.empty_cache()

if __name__ == "__main__":
    # Set up command line argument parser
    parser = ArgumentParser(description="Training script parameters")
    lp = ModelParams(parser)
    op = OptimizationParams(parser)
    pp = PipelineParams(parser)
    parser.add_argument('--ip', type=str, default="127.0.0.1")
    parser.add_argument('--port', type=int, default=6009)
    parser.add_argument('--debug_from', type=int, default=-1)
    parser.add_argument('--detect_anomaly', action='store_true', default=False)
    parser.add_argument("--test_iterations", nargs="+", type=int, default=[7_000, 30_000])
    parser.add_argument("--save_iterations", nargs="+", type=int, default=[7_000, 30_000])
    parser.add_argument("--quiet", action="store_true")
    parser.add_argument('--disable_viewer', action='store_true', default=False)
    parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
    parser.add_argument("--start_checkpoint", type=str, default = None)
    args = parser.parse_args(sys.argv[1:])
    args.save_iterations.append(args.iterations)
    
    print("Optimizing " + args.model_path)

    # Initialize system state (RNG)
    safe_state(args.quiet)

    # Start GUI server, configure and run training
    if not args.disable_viewer:
        network_gui.init(args.ip, args.port)
    torch.autograd.set_detect_anomaly(args.detect_anomaly)
    training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from)

    # All done
    print("\nTraining complete.")