Spaces:
Running
on
Zero
Running
on
Zero
File size: 40,037 Bytes
5f9d349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 |
from matplotlib import pyplot as plt
import numpy as np
import torch
import numpy as np
from typing import List
import sys
sys.path.append('./submodules/gaussian-splatting/')
from scene.cameras import Camera
from PIL import Image
import imageio
from scipy.interpolate import splprep, splev
import cv2
import numpy as np
import plotly.graph_objects as go
import numpy as np
from scipy.spatial.transform import Rotation as R, Slerp
from scipy.spatial import distance_matrix
from sklearn.decomposition import PCA
from scipy.interpolate import splprep, splev
from typing import List
from sklearn.mixture import GaussianMixture
def render_gaussians_rgb(generator3DGS, viewpoint_cam, visualize=False):
"""
Simply render gaussians from the generator3DGS from the viewpoint_cam.
Args:
generator3DGS : instance of the Generator3DGS class from the networks.py file
viewpoint_cam : camera instance
visualize : boolean flag. If True, will call pyplot function and render image inplace
Returns:
uint8 numpy array with shape (H, W, 3) representing the image
"""
with torch.no_grad():
render_pkg = generator3DGS(viewpoint_cam)
image = render_pkg["render"]
image_np = image.clone().detach().cpu().numpy().transpose(1, 2, 0)
# Clip values to be in the range [0, 1]
image_np = np.clip(image_np * 255, 0, 255).astype(np.uint8)
if visualize:
plt.figure(figsize=(12, 8))
plt.imshow(image_np)
plt.show()
return image_np
def render_gaussians_D_scores(generator3DGS, viewpoint_cam, mask=None, mask_channel=0, visualize=False):
"""
Simply render D_scores of gaussians from the generator3DGS from the viewpoint_cam.
Args:
generator3DGS : instance of the Generator3DGS class from the networks.py file
viewpoint_cam : camera instance
visualize : boolean flag. If True, will call pyplot function and render image inplace
mask : optional mask to highlight specific gaussians. Must be of shape (N) where N is the numnber
of gaussians in generator3DGS.gaussians. Must be a torch tensor of floats, please scale according
to how much color you want to have. Recommended mask value is 10.
mask_channel: to which color channel should we add mask
Returns:
uint8 numpy array with shape (H, W, 3) representing the generator3DGS.gaussians.D_scores rendered as colors
"""
with torch.no_grad():
# Visualize D_scores
generator3DGS.gaussians._features_dc = generator3DGS.gaussians._features_dc * 1e-4 + \
torch.stack([generator3DGS.gaussians.D_scores] * 3, axis=-1)
generator3DGS.gaussians._features_rest = generator3DGS.gaussians._features_rest * 1e-4
if mask is not None:
generator3DGS.gaussians._features_dc[..., mask_channel] += mask.unsqueeze(-1)
render_pkg = generator3DGS(viewpoint_cam)
image = render_pkg["render"]
image_np = image.clone().detach().cpu().numpy().transpose(1, 2, 0)
# Clip values to be in the range [0, 1]
image_np = np.clip(image_np * 255, 0, 255).astype(np.uint8)
if visualize:
plt.figure(figsize=(12, 8))
plt.imshow(image_np)
plt.show()
if mask is not None:
generator3DGS.gaussians._features_dc[..., mask_channel] -= mask.unsqueeze(-1)
generator3DGS.gaussians._features_dc = (generator3DGS.gaussians._features_dc - \
torch.stack([generator3DGS.gaussians.D_scores] * 3, axis=-1)) * 1e4
generator3DGS.gaussians._features_rest = generator3DGS.gaussians._features_rest * 1e4
return image_np
def normalize(v):
"""
Normalize a vector to unit length.
Parameters:
v (np.ndarray): Input vector.
Returns:
np.ndarray: Unit vector in the same direction as `v`.
"""
return v / np.linalg.norm(v)
def look_at_rotation(camera_position: np.ndarray, target: np.ndarray, world_up=np.array([0, 1, 0])):
"""
Compute a rotation matrix for a camera looking at a target point.
Parameters:
camera_position (np.ndarray): The 3D position of the camera.
target (np.ndarray): The point the camera should look at.
world_up (np.ndarray): A vector that defines the global 'up' direction.
Returns:
np.ndarray: A 3x3 rotation matrix (camera-to-world) with columns [right, up, forward].
"""
z_axis = normalize(target - camera_position) # Forward direction
x_axis = normalize(np.cross(world_up, z_axis)) # Right direction
y_axis = np.cross(z_axis, x_axis) # Recomputed up
return np.stack([x_axis, y_axis, z_axis], axis=1)
def generate_circular_camera_path(existing_cameras: List[Camera], N: int = 12, radius_scale: float = 1.0, d: float = 2.0) -> List[Camera]:
"""
Generate a circular path of cameras around an existing camera group,
with each new camera oriented to look at the average viewing direction.
Parameters:
existing_cameras (List[Camera]): List of existing camera objects to estimate average orientation and layout.
N (int): Number of new cameras to generate along the circular path.
radius_scale (float): Scale factor to adjust the radius of the circle.
d (float): Distance ahead of each camera used to estimate its look-at point.
Returns:
List[Camera]: A list of newly generated Camera objects forming a circular path and oriented toward a shared view center.
"""
# Step 1: Compute average camera position
center = np.mean([cam.T for cam in existing_cameras], axis=0)
# Estimate where each camera is looking
# d denotes how far ahead each camera sees — you can scale this
look_targets = [cam.T + cam.R[:, 2] * d for cam in existing_cameras]
center_of_view = np.mean(look_targets, axis=0)
# Step 2: Define circular plane basis using fixed up vector
avg_forward = normalize(np.mean([cam.R[:, 2] for cam in existing_cameras], axis=0))
up_guess = np.array([0, 1, 0])
right = normalize(np.cross(avg_forward, up_guess))
up = normalize(np.cross(right, avg_forward))
# Step 3: Estimate radius
avg_radius = np.mean([np.linalg.norm(cam.T - center) for cam in existing_cameras]) * radius_scale
# Step 4: Create cameras on a circular path
angles = np.linspace(0, 2 * np.pi, N, endpoint=False)
reference_cam = existing_cameras[0]
new_cameras = []
for i, a in enumerate(angles):
position = center + avg_radius * (np.cos(a) * right + np.sin(a) * up)
if d < 1e-5 or radius_scale < 1e-5:
# Use same orientation as the first camera
R = reference_cam.R.copy()
else:
# Change orientation
R = look_at_rotation(position, center_of_view)
new_cameras.append(Camera(
R=R,
T=position, # New position
FoVx=reference_cam.FoVx,
FoVy=reference_cam.FoVy,
resolution=(reference_cam.image_width, reference_cam.image_height),
colmap_id=-1,
depth_params=None,
image=Image.fromarray(np.zeros((reference_cam.image_height, reference_cam.image_width, 3), dtype=np.uint8)),
invdepthmap=None,
image_name=f"circular_a={a:.3f}",
uid=i
))
return new_cameras
def save_numpy_frames_as_gif(frames, output_path="animation.gif", duration=100):
"""
Save a list of RGB NumPy frames as a looping GIF animation.
Parameters:
frames (List[np.ndarray]): List of RGB images as uint8 NumPy arrays (shape HxWx3).
output_path (str): Path to save the output GIF.
duration (int): Duration per frame in milliseconds.
Returns:
None
"""
pil_frames = [Image.fromarray(f) for f in frames]
pil_frames[0].save(
output_path,
save_all=True,
append_images=pil_frames[1:],
duration=duration, # duration per frame in ms
loop=0
)
print(f"GIF saved to: {output_path}")
def center_crop_frame(frame: np.ndarray, crop_fraction: float) -> np.ndarray:
"""
Crop the central region of the frame by the given fraction.
Parameters:
frame (np.ndarray): Input RGB image (H, W, 3).
crop_fraction (float): Fraction of the original size to retain (e.g., 0.8 keeps 80%).
Returns:
np.ndarray: Cropped RGB image.
"""
if crop_fraction >= 1.0:
return frame
h, w, _ = frame.shape
new_h, new_w = int(h * crop_fraction), int(w * crop_fraction)
start_y = (h - new_h) // 2
start_x = (w - new_w) // 2
return frame[start_y:start_y + new_h, start_x:start_x + new_w, :]
def generate_smooth_closed_camera_path(existing_cameras: List[Camera], N: int = 120, d: float = 2.0, s=.25) -> List[Camera]:
"""
Generate a smooth, closed path interpolating the positions of existing cameras.
Parameters:
existing_cameras (List[Camera]): List of existing cameras.
N (int): Number of points (cameras) to sample along the smooth path.
d (float): Distance ahead for estimating the center of view.
Returns:
List[Camera]: A list of smoothly moving Camera objects along a closed loop.
"""
# Step 1: Extract camera positions
positions = np.array([cam.T for cam in existing_cameras])
# Step 2: Estimate center of view
look_targets = [cam.T + cam.R[:, 2] * d for cam in existing_cameras]
center_of_view = np.mean(look_targets, axis=0)
# Step 3: Fit a smooth closed spline through the positions
positions = np.vstack([positions, positions[0]]) # close the loop
tck, u = splprep(positions.T, s=s, per=True) # periodic=True for closed loop
# Step 4: Sample points along the spline
u_fine = np.linspace(0, 1, N)
smooth_path = np.stack(splev(u_fine, tck), axis=-1)
# Step 5: Generate cameras along the smooth path
reference_cam = existing_cameras[0]
new_cameras = []
for i, pos in enumerate(smooth_path):
R = look_at_rotation(pos, center_of_view)
new_cameras.append(Camera(
R=R,
T=pos,
FoVx=reference_cam.FoVx,
FoVy=reference_cam.FoVy,
resolution=(reference_cam.image_width, reference_cam.image_height),
colmap_id=-1,
depth_params=None,
image=Image.fromarray(np.zeros((reference_cam.image_height, reference_cam.image_width, 3), dtype=np.uint8)),
invdepthmap=None,
image_name=f"smooth_path_i={i}",
uid=i
))
return new_cameras
def save_numpy_frames_as_mp4(frames, output_path="animation.mp4", fps=10, center_crop: float = 1.0):
"""
Save a list of RGB NumPy frames as an MP4 video with optional center cropping.
Parameters:
frames (List[np.ndarray]): List of RGB images as uint8 NumPy arrays (shape HxWx3).
output_path (str): Path to save the output MP4.
fps (int): Frames per second for playback speed.
center_crop (float): Fraction (0 < center_crop <= 1.0) of central region to retain.
Use 1.0 for no cropping; 0.8 to crop to 80% center region.
Returns:
None
"""
with imageio.get_writer(output_path, fps=fps, codec='libx264', quality=8) as writer:
for frame in frames:
cropped = center_crop_frame(frame, center_crop)
writer.append_data(cropped)
print(f"MP4 saved to: {output_path}")
def put_text_on_image(img: np.ndarray, text: str) -> np.ndarray:
"""
Draws multiline white text on a copy of the input image, positioned near the bottom
and around 80% of the image width. Handles '\n' characters to split text into multiple lines.
Args:
img (np.ndarray): Input image as a (H, W, 3) uint8 numpy array.
text (str): Text string to draw on the image. Newlines '\n' are treated as line breaks.
Returns:
np.ndarray: The output image with the text drawn on it.
Notes:
- The function automatically adjusts line spacing and prevents text from going outside the image.
- Text is drawn in white with small font size (0.5) for minimal visual impact.
"""
img = img.copy()
height, width, _ = img.shape
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1.
color = (255, 255, 255)
thickness = 2
line_spacing = 5 # extra pixels between lines
lines = text.split('\n')
# Precompute the maximum text width to adjust starting x
max_text_width = max(cv2.getTextSize(line, font, font_scale, thickness)[0][0] for line in lines)
x = int(0.8 * width)
x = min(x, width - max_text_width - 30) # margin on right
#x = int(0.03 * width)
# Start near the bottom, but move up depending on number of lines
total_text_height = len(lines) * (cv2.getTextSize('A', font, font_scale, thickness)[0][1] + line_spacing)
y_start = int(height*0.9) - total_text_height # 30 pixels from bottom
for i, line in enumerate(lines):
y = y_start + i * (cv2.getTextSize(line, font, font_scale, thickness)[0][1] + line_spacing)
cv2.putText(img, line, (x, y), font, font_scale, color, thickness, cv2.LINE_AA)
return img
def catmull_rom_spline(P0, P1, P2, P3, n_points=20):
"""
Compute Catmull-Rom spline segment between P1 and P2.
"""
t = np.linspace(0, 1, n_points)[:, None]
M = 0.5 * np.array([
[-1, 3, -3, 1],
[ 2, -5, 4, -1],
[-1, 0, 1, 0],
[ 0, 2, 0, 0]
])
G = np.stack([P0, P1, P2, P3], axis=0)
T = np.concatenate([t**3, t**2, t, np.ones_like(t)], axis=1)
return T @ M @ G
def sort_cameras_pca(existing_cameras: List[Camera]):
"""
Sort cameras along the main PCA axis.
"""
positions = np.array([cam.T for cam in existing_cameras])
pca = PCA(n_components=1)
scores = pca.fit_transform(positions)
sorted_indices = np.argsort(scores[:, 0])
return sorted_indices
def generate_fully_smooth_cameras(existing_cameras: List[Camera],
n_selected: int = 30,
n_points_per_segment: int = 20,
d: float = 2.0,
closed: bool = False) -> List[Camera]:
"""
Generate a fully smooth camera path using PCA ordering, global Catmull-Rom spline for positions, and global SLERP for orientations.
Args:
existing_cameras (List[Camera]): List of input cameras.
n_selected (int): Number of cameras to select after sorting.
n_points_per_segment (int): Number of interpolated points per spline segment.
d (float): Distance ahead for estimating center of view.
closed (bool): Whether to close the path.
Returns:
List[Camera]: List of smoothly moving Camera objects.
"""
# 1. Sort cameras along PCA axis
sorted_indices = sort_cameras_pca(existing_cameras)
sorted_cameras = [existing_cameras[i] for i in sorted_indices]
positions = np.array([cam.T for cam in sorted_cameras])
# 2. Subsample uniformly
idx = np.linspace(0, len(positions) - 1, n_selected).astype(int)
sampled_positions = positions[idx]
sampled_cameras = [sorted_cameras[i] for i in idx]
# 3. Prepare for Catmull-Rom
if closed:
sampled_positions = np.vstack([sampled_positions[-1], sampled_positions, sampled_positions[0], sampled_positions[1]])
else:
sampled_positions = np.vstack([sampled_positions[0], sampled_positions, sampled_positions[-1], sampled_positions[-1]])
# 4. Generate smooth path positions
path_positions = []
for i in range(1, len(sampled_positions) - 2):
segment = catmull_rom_spline(sampled_positions[i-1], sampled_positions[i], sampled_positions[i+1], sampled_positions[i+2], n_points_per_segment)
path_positions.append(segment)
path_positions = np.concatenate(path_positions, axis=0)
# 5. Global SLERP for rotations
rotations = R.from_matrix([cam.R for cam in sampled_cameras])
key_times = np.linspace(0, 1, len(rotations))
slerp = Slerp(key_times, rotations)
query_times = np.linspace(0, 1, len(path_positions))
interpolated_rotations = slerp(query_times)
# 6. Generate Camera objects
reference_cam = existing_cameras[0]
smooth_cameras = []
for i, pos in enumerate(path_positions):
R_interp = interpolated_rotations[i].as_matrix()
smooth_cameras.append(Camera(
R=R_interp,
T=pos,
FoVx=reference_cam.FoVx,
FoVy=reference_cam.FoVy,
resolution=(reference_cam.image_width, reference_cam.image_height),
colmap_id=-1,
depth_params=None,
image=Image.fromarray(np.zeros((reference_cam.image_height, reference_cam.image_width, 3), dtype=np.uint8)),
invdepthmap=None,
image_name=f"fully_smooth_path_i={i}",
uid=i
))
return smooth_cameras
def plot_cameras_and_smooth_path_with_orientation(existing_cameras: List[Camera], smooth_cameras: List[Camera], scale: float = 0.1):
"""
Plot input cameras and smooth path cameras with their orientations in 3D.
Args:
existing_cameras (List[Camera]): List of original input cameras.
smooth_cameras (List[Camera]): List of smooth path cameras.
scale (float): Length of orientation arrows.
Returns:
None
"""
# Input cameras
input_positions = np.array([cam.T for cam in existing_cameras])
# Smooth cameras
smooth_positions = np.array([cam.T for cam in smooth_cameras])
fig = go.Figure()
# Plot input camera positions
fig.add_trace(go.Scatter3d(
x=input_positions[:, 0], y=input_positions[:, 1], z=input_positions[:, 2],
mode='markers',
marker=dict(size=4, color='blue'),
name='Input Cameras'
))
# Plot smooth path positions
fig.add_trace(go.Scatter3d(
x=smooth_positions[:, 0], y=smooth_positions[:, 1], z=smooth_positions[:, 2],
mode='lines+markers',
line=dict(color='red', width=3),
marker=dict(size=2, color='red'),
name='Smooth Path Cameras'
))
# Plot input camera orientations
for cam in existing_cameras:
origin = cam.T
forward = cam.R[:, 2] # Forward direction
fig.add_trace(go.Cone(
x=[origin[0]], y=[origin[1]], z=[origin[2]],
u=[forward[0]], v=[forward[1]], w=[forward[2]],
colorscale=[[0, 'blue'], [1, 'blue']],
sizemode="absolute",
sizeref=scale,
anchor="tail",
showscale=False,
name='Input Camera Direction'
))
# Plot smooth camera orientations
for cam in smooth_cameras:
origin = cam.T
forward = cam.R[:, 2] # Forward direction
fig.add_trace(go.Cone(
x=[origin[0]], y=[origin[1]], z=[origin[2]],
u=[forward[0]], v=[forward[1]], w=[forward[2]],
colorscale=[[0, 'red'], [1, 'red']],
sizemode="absolute",
sizeref=scale,
anchor="tail",
showscale=False,
name='Smooth Camera Direction'
))
fig.update_layout(
scene=dict(
xaxis_title='X',
yaxis_title='Y',
zaxis_title='Z',
aspectmode='data'
),
title="Input Cameras and Smooth Path with Orientations",
margin=dict(l=0, r=0, b=0, t=30)
)
fig.show()
def solve_tsp_nearest_neighbor(points: np.ndarray):
"""
Solve TSP approximately using nearest neighbor heuristic.
Args:
points (np.ndarray): (N, 3) array of points.
Returns:
List[int]: Optimal visiting order of points.
"""
N = points.shape[0]
dist = distance_matrix(points, points)
visited = [0]
unvisited = set(range(1, N))
while unvisited:
last = visited[-1]
next_city = min(unvisited, key=lambda city: dist[last, city])
visited.append(next_city)
unvisited.remove(next_city)
return visited
def solve_tsp_2opt(points: np.ndarray, n_iter: int = 1000) -> np.ndarray:
"""
Solve TSP approximately using Nearest Neighbor + 2-Opt.
Args:
points (np.ndarray): Array of shape (N, D) with points.
n_iter (int): Number of 2-opt iterations.
Returns:
np.ndarray: Ordered list of indices.
"""
n_points = points.shape[0]
# === 1. Start with Nearest Neighbor
unvisited = list(range(n_points))
current = unvisited.pop(0)
path = [current]
while unvisited:
dists = np.linalg.norm(points[unvisited] - points[current], axis=1)
next_idx = unvisited[np.argmin(dists)]
unvisited.remove(next_idx)
path.append(next_idx)
current = next_idx
# === 2. Apply 2-Opt improvements
def path_length(path):
return np.sum(np.linalg.norm(points[path[i]] - points[path[i+1]], axis=0) for i in range(len(path)-1))
best_length = path_length(path)
improved = True
for _ in range(n_iter):
if not improved:
break
improved = False
for i in range(1, n_points - 2):
for j in range(i + 1, n_points):
if j - i == 1: continue
new_path = path[:i] + path[i:j][::-1] + path[j:]
new_length = path_length(new_path)
if new_length < best_length:
path = new_path
best_length = new_length
improved = True
break
if improved:
break
return np.array(path)
def generate_fully_smooth_cameras_with_tsp(existing_cameras: List[Camera],
n_selected: int = 30,
n_points_per_segment: int = 20,
d: float = 2.0,
closed: bool = False) -> List[Camera]:
"""
Generate a fully smooth camera path using TSP ordering, global Catmull-Rom spline for positions, and global SLERP for orientations.
Args:
existing_cameras (List[Camera]): List of input cameras.
n_selected (int): Number of cameras to select after ordering.
n_points_per_segment (int): Number of interpolated points per spline segment.
d (float): Distance ahead for estimating center of view.
closed (bool): Whether to close the path.
Returns:
List[Camera]: List of smoothly moving Camera objects.
"""
positions = np.array([cam.T for cam in existing_cameras])
# 1. Solve approximate TSP
order = solve_tsp_nearest_neighbor(positions)
ordered_cameras = [existing_cameras[i] for i in order]
ordered_positions = positions[order]
# 2. Subsample uniformly
idx = np.linspace(0, len(ordered_positions) - 1, n_selected).astype(int)
sampled_positions = ordered_positions[idx]
sampled_cameras = [ordered_cameras[i] for i in idx]
# 3. Prepare for Catmull-Rom
if closed:
sampled_positions = np.vstack([sampled_positions[-1], sampled_positions, sampled_positions[0], sampled_positions[1]])
else:
sampled_positions = np.vstack([sampled_positions[0], sampled_positions, sampled_positions[-1], sampled_positions[-1]])
# 4. Generate smooth path positions
path_positions = []
for i in range(1, len(sampled_positions) - 2):
segment = catmull_rom_spline(sampled_positions[i-1], sampled_positions[i], sampled_positions[i+1], sampled_positions[i+2], n_points_per_segment)
path_positions.append(segment)
path_positions = np.concatenate(path_positions, axis=0)
# 5. Global SLERP for rotations
rotations = R.from_matrix([cam.R for cam in sampled_cameras])
key_times = np.linspace(0, 1, len(rotations))
slerp = Slerp(key_times, rotations)
query_times = np.linspace(0, 1, len(path_positions))
interpolated_rotations = slerp(query_times)
# 6. Generate Camera objects
reference_cam = existing_cameras[0]
smooth_cameras = []
for i, pos in enumerate(path_positions):
R_interp = interpolated_rotations[i].as_matrix()
smooth_cameras.append(Camera(
R=R_interp,
T=pos,
FoVx=reference_cam.FoVx,
FoVy=reference_cam.FoVy,
resolution=(reference_cam.image_width, reference_cam.image_height),
colmap_id=-1,
depth_params=None,
image=Image.fromarray(np.zeros((reference_cam.image_height, reference_cam.image_width, 3), dtype=np.uint8)),
invdepthmap=None,
image_name=f"fully_smooth_path_i={i}",
uid=i
))
return smooth_cameras
from typing import List
import numpy as np
from sklearn.mixture import GaussianMixture
from scipy.spatial.transform import Rotation as R, Slerp
from PIL import Image
def generate_clustered_smooth_cameras_with_tsp(existing_cameras: List[Camera],
n_selected: int = 30,
n_points_per_segment: int = 20,
d: float = 2.0,
n_clusters: int = 5,
closed: bool = False) -> List[Camera]:
"""
Generate a fully smooth camera path using clustering + TSP between nearest cluster centers + TSP inside clusters.
Positions are normalized before clustering and denormalized before generating final cameras.
Args:
existing_cameras (List[Camera]): List of input cameras.
n_selected (int): Number of cameras to select after ordering.
n_points_per_segment (int): Number of interpolated points per spline segment.
d (float): Distance ahead for estimating center of view.
n_clusters (int): Number of GMM clusters.
closed (bool): Whether to close the path.
Returns:
List[Camera]: Smooth path of Camera objects.
"""
# Extract positions and rotations
positions = np.array([cam.T for cam in existing_cameras])
rotations = np.array([R.from_matrix(cam.R).as_quat() for cam in existing_cameras])
# === Normalize positions
mean_pos = np.mean(positions, axis=0)
scale_pos = np.std(positions, axis=0)
scale_pos[scale_pos == 0] = 1.0 # avoid division by zero
positions_normalized = (positions - mean_pos) / scale_pos
# === Features for clustering (only positions, not rotations)
features = positions_normalized
# === 1. GMM clustering
gmm = GaussianMixture(n_components=n_clusters, covariance_type='full', random_state=42)
cluster_labels = gmm.fit_predict(features)
clusters = {}
cluster_centers = []
for cluster_id in range(n_clusters):
cluster_indices = np.where(cluster_labels == cluster_id)[0]
if len(cluster_indices) == 0:
continue
clusters[cluster_id] = cluster_indices
cluster_center = np.mean(features[cluster_indices], axis=0)
cluster_centers.append(cluster_center)
cluster_centers = np.stack(cluster_centers)
# === 2. Remap cluster centers to nearest existing cameras
if False:
mapped_centers = []
for center in cluster_centers:
dists = np.linalg.norm(features - center, axis=1)
nearest_idx = np.argmin(dists)
mapped_centers.append(features[nearest_idx])
mapped_centers = np.stack(mapped_centers)
cluster_centers = mapped_centers
# === 3. Solve TSP between mapped cluster centers
cluster_order = solve_tsp_2opt(cluster_centers)
# === 4. For each cluster, solve TSP inside cluster
final_indices = []
for cluster_id in cluster_order:
cluster_indices = clusters[cluster_id]
cluster_positions = features[cluster_indices]
if len(cluster_positions) == 1:
final_indices.append(cluster_indices[0])
continue
local_order = solve_tsp_nearest_neighbor(cluster_positions)
ordered_cluster_indices = cluster_indices[local_order]
final_indices.extend(ordered_cluster_indices)
ordered_cameras = [existing_cameras[i] for i in final_indices]
ordered_positions = positions_normalized[final_indices]
# === 5. Subsample uniformly
idx = np.linspace(0, len(ordered_positions) - 1, n_selected).astype(int)
sampled_positions = ordered_positions[idx]
sampled_cameras = [ordered_cameras[i] for i in idx]
# === 6. Prepare for Catmull-Rom spline
if closed:
sampled_positions = np.vstack([sampled_positions[-1], sampled_positions, sampled_positions[0], sampled_positions[1]])
else:
sampled_positions = np.vstack([sampled_positions[0], sampled_positions, sampled_positions[-1], sampled_positions[-1]])
# === 7. Smooth path positions
path_positions = []
for i in range(1, len(sampled_positions) - 2):
segment = catmull_rom_spline(sampled_positions[i-1], sampled_positions[i], sampled_positions[i+1], sampled_positions[i+2], n_points_per_segment)
path_positions.append(segment)
path_positions = np.concatenate(path_positions, axis=0)
# === 8. Denormalize
path_positions = path_positions * scale_pos + mean_pos
# === 9. SLERP for rotations
rotations = R.from_matrix([cam.R for cam in sampled_cameras])
key_times = np.linspace(0, 1, len(rotations))
slerp = Slerp(key_times, rotations)
query_times = np.linspace(0, 1, len(path_positions))
interpolated_rotations = slerp(query_times)
# === 10. Generate Camera objects
reference_cam = existing_cameras[0]
smooth_cameras = []
for i, pos in enumerate(path_positions):
R_interp = interpolated_rotations[i].as_matrix()
smooth_cameras.append(Camera(
R=R_interp,
T=pos,
FoVx=reference_cam.FoVx,
FoVy=reference_cam.FoVy,
resolution=(reference_cam.image_width, reference_cam.image_height),
colmap_id=-1,
depth_params=None,
image=Image.fromarray(np.zeros((reference_cam.image_height, reference_cam.image_width, 3), dtype=np.uint8)),
invdepthmap=None,
image_name=f"clustered_smooth_path_i={i}",
uid=i
))
return smooth_cameras
# def generate_clustered_path(existing_cameras: List[Camera],
# n_points_per_segment: int = 20,
# d: float = 2.0,
# n_clusters: int = 5,
# closed: bool = False) -> List[Camera]:
# """
# Generate a smooth camera path using GMM clustering and TSP on cluster centers.
# Args:
# existing_cameras (List[Camera]): List of input cameras.
# n_points_per_segment (int): Number of interpolated points per spline segment.
# d (float): Distance ahead for estimating center of view.
# n_clusters (int): Number of GMM clusters (zones).
# closed (bool): Whether to close the path.
# Returns:
# List[Camera]: Smooth path of Camera objects.
# """
# # Extract positions and rotations
# positions = np.array([cam.T for cam in existing_cameras])
# # === Normalize positions
# mean_pos = np.mean(positions, axis=0)
# scale_pos = np.std(positions, axis=0)
# scale_pos[scale_pos == 0] = 1.0
# positions_normalized = (positions - mean_pos) / scale_pos
# # === 1. GMM clustering (only positions)
# gmm = GaussianMixture(n_components=n_clusters, covariance_type='full', random_state=42)
# cluster_labels = gmm.fit_predict(positions_normalized)
# cluster_centers = []
# for cluster_id in range(n_clusters):
# cluster_indices = np.where(cluster_labels == cluster_id)[0]
# if len(cluster_indices) == 0:
# continue
# cluster_center = np.mean(positions_normalized[cluster_indices], axis=0)
# cluster_centers.append(cluster_center)
# cluster_centers = np.stack(cluster_centers)
# # === 2. Solve TSP between cluster centers
# cluster_order = solve_tsp_2opt(cluster_centers)
# # === 3. Reorder cluster centers
# ordered_centers = cluster_centers[cluster_order]
# # === 4. Prepare Catmull-Rom spline
# if closed:
# ordered_centers = np.vstack([ordered_centers[-1], ordered_centers, ordered_centers[0], ordered_centers[1]])
# else:
# ordered_centers = np.vstack([ordered_centers[0], ordered_centers, ordered_centers[-1], ordered_centers[-1]])
# # === 5. Generate smooth path positions
# path_positions = []
# for i in range(1, len(ordered_centers) - 2):
# segment = catmull_rom_spline(ordered_centers[i-1], ordered_centers[i], ordered_centers[i+1], ordered_centers[i+2], n_points_per_segment)
# path_positions.append(segment)
# path_positions = np.concatenate(path_positions, axis=0)
# # === 6. Denormalize back
# path_positions = path_positions * scale_pos + mean_pos
# # === 7. Generate dummy rotations (constant forward facing)
# reference_cam = existing_cameras[0]
# default_rotation = R.from_matrix(reference_cam.R)
# # For simplicity, fixed rotation for all
# smooth_cameras = []
# for i, pos in enumerate(path_positions):
# R_interp = default_rotation.as_matrix()
# smooth_cameras.append(Camera(
# R=R_interp,
# T=pos,
# FoVx=reference_cam.FoVx,
# FoVy=reference_cam.FoVy,
# resolution=(reference_cam.image_width, reference_cam.image_height),
# colmap_id=-1,
# depth_params=None,
# image=Image.fromarray(np.zeros((reference_cam.image_height, reference_cam.image_width, 3), dtype=np.uint8)),
# invdepthmap=None,
# image_name=f"cluster_path_i={i}",
# uid=i
# ))
# return smooth_cameras
from typing import List
import numpy as np
from sklearn.cluster import KMeans
from scipy.spatial.transform import Rotation as R, Slerp
from PIL import Image
def generate_clustered_path(existing_cameras: List[Camera],
n_points_per_segment: int = 20,
d: float = 2.0,
n_clusters: int = 5,
closed: bool = False) -> List[Camera]:
"""
Generate a smooth camera path using K-Means clustering and TSP on cluster centers.
Args:
existing_cameras (List[Camera]): List of input cameras.
n_points_per_segment (int): Number of interpolated points per spline segment.
d (float): Distance ahead for estimating center of view.
n_clusters (int): Number of KMeans clusters (zones).
closed (bool): Whether to close the path.
Returns:
List[Camera]: Smooth path of Camera objects.
"""
# Extract positions
positions = np.array([cam.T for cam in existing_cameras])
# === Normalize positions
mean_pos = np.mean(positions, axis=0)
scale_pos = np.std(positions, axis=0)
scale_pos[scale_pos == 0] = 1.0
positions_normalized = (positions - mean_pos) / scale_pos
# === 1. K-Means clustering (only positions)
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init='auto')
cluster_labels = kmeans.fit_predict(positions_normalized)
cluster_centers = []
for cluster_id in range(n_clusters):
cluster_indices = np.where(cluster_labels == cluster_id)[0]
if len(cluster_indices) == 0:
continue
cluster_center = np.mean(positions_normalized[cluster_indices], axis=0)
cluster_centers.append(cluster_center)
cluster_centers = np.stack(cluster_centers)
# === 2. Solve TSP between cluster centers
cluster_order = solve_tsp_2opt(cluster_centers)
# === 3. Reorder cluster centers
ordered_centers = cluster_centers[cluster_order]
# === 4. Prepare Catmull-Rom spline
if closed:
ordered_centers = np.vstack([ordered_centers[-1], ordered_centers, ordered_centers[0], ordered_centers[1]])
else:
ordered_centers = np.vstack([ordered_centers[0], ordered_centers, ordered_centers[-1], ordered_centers[-1]])
# === 5. Generate smooth path positions
path_positions = []
for i in range(1, len(ordered_centers) - 2):
segment = catmull_rom_spline(ordered_centers[i-1], ordered_centers[i], ordered_centers[i+1], ordered_centers[i+2], n_points_per_segment)
path_positions.append(segment)
path_positions = np.concatenate(path_positions, axis=0)
# === 6. Denormalize back
path_positions = path_positions * scale_pos + mean_pos
# === 7. Generate dummy rotations (constant forward facing)
reference_cam = existing_cameras[0]
default_rotation = R.from_matrix(reference_cam.R)
# For simplicity, fixed rotation for all
smooth_cameras = []
for i, pos in enumerate(path_positions):
R_interp = default_rotation.as_matrix()
smooth_cameras.append(Camera(
R=R_interp,
T=pos,
FoVx=reference_cam.FoVx,
FoVy=reference_cam.FoVy,
resolution=(reference_cam.image_width, reference_cam.image_height),
colmap_id=-1,
depth_params=None,
image=Image.fromarray(np.zeros((reference_cam.image_height, reference_cam.image_width, 3), dtype=np.uint8)),
invdepthmap=None,
image_name=f"cluster_path_i={i}",
uid=i
))
return smooth_cameras
def visualize_image_with_points(image, points):
"""
Visualize an image with points overlaid on top. This is useful for correspondences visualizations
Parameters:
- image: PIL Image object
- points: Numpy array of shape [N, 2] containing (x, y) coordinates of points
Returns:
- None (displays the visualization)
"""
# Convert PIL image to numpy array
img_array = np.array(image)
# Create a figure and axis
fig, ax = plt.subplots(figsize=(7,7))
# Display the image
ax.imshow(img_array)
# Scatter plot the points on top of the image
ax.scatter(points[:, 0], points[:, 1], color='red', marker='o', s=1)
# Show the plot
plt.show()
def visualize_correspondences(image1, points1, image2, points2):
"""
Visualize two images concatenated horizontally with key points and correspondences.
Parameters:
- image1: PIL Image object (left image)
- points1: Numpy array of shape [N, 2] containing (x, y) coordinates of key points for image1
- image2: PIL Image object (right image)
- points2: Numpy array of shape [N, 2] containing (x, y) coordinates of key points for image2
Returns:
- None (displays the visualization)
"""
# Concatenate images horizontally
concatenated_image = np.concatenate((np.array(image1), np.array(image2)), axis=1)
# Create a figure and axis
fig, ax = plt.subplots(figsize=(10,10))
# Display the concatenated image
ax.imshow(concatenated_image)
# Plot key points on the left image
ax.scatter(points1[:, 0], points1[:, 1], color='red', marker='o', s=10)
# Plot key points on the right image
ax.scatter(points2[:, 0] + image1.width, points2[:, 1], color='blue', marker='o', s=10)
# Draw lines connecting corresponding key points
for i in range(len(points1)):
ax.plot([points1[i, 0], points2[i, 0] + image1.width], [points1[i, 1], points2[i, 1]])#, color='green')
# Show the plot
plt.show()
|